Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 306879, 11 pages
http://dx.doi.org/10.1155/2012/306879
Review Article

Anoikis Resistance: An Essential Prerequisite for Tumor Metastasis

Pediatric Oncology Branch, National Cancer Center, 323 Ilsan-Ro, Ilsandong-Gu, Gyeonggi-Do, Goyang-Si 410-769, Republic of Korea

Received 21 October 2011; Accepted 3 December 2011

Academic Editor: Motoharu Seiki

Copyright © 2012 Yong-Nyun Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Nelson and M. J. Bissell, “Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer,” Annual Review of Cell and Developmental Biology, vol. 22, pp. 287–309, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. S. M. Frisch and H. Francis, “Disruption of epithelial cell-matrix interactions induces apoptosis,” Journal of Cell Biology, vol. 124, no. 4, pp. 619–626, 1994. View at Google Scholar · View at Scopus
  4. M. L. Taddei, E. Giannoni, T. Fiaschi, and P. Chiarugi, “Anoikis: an emerging hallmark in health and diseases,” Journal of Pathology, vol. 226, no. 2, pp. 380–393, 2012. View at Publisher · View at Google Scholar · View at PubMed
  5. C. D. Simpson, K. Anyiwe, and A. D. Schimmer, “Anoikis resistance and tumor metastasis,” Cancer Letters, vol. 272, no. 2, pp. 177–185, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Uekita, M. Tanaka, M. Takigahira et al., “CUB-domain-containing protein 1 regulates peritoneal dissemination of gastric scirrhous carcinoma,” American Journal of Pathology, vol. 172, no. 6, pp. 1729–1739, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S. J. Strauss, T. Ng, A. Mendoza-Naranjo, J. Whelan, and P. H. B. Sorensen, “Understanding micrometastatic disease and anoikis resistance in ewing family of tumors and osteosarcoma,” The Oncologist, vol. 15, no. 6, pp. 627–635, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Masoumi Moghaddam, A. Amini, D. L. Morris, and M. H. Pourgholami, “Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer,” Cancer and Metastasis Reviews. In press.
  9. I. D. Campbell and M. J. Humphries, “Integrin structure, activation, and interactions,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 3, 2011. View at Google Scholar
  10. L. D. Nagaprashantha, R. Vatsyayan, P. C. R. Lelsani, S. Awasthi, and S. S. Singhal, “The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors,” International Journal of Cancer, vol. 128, no. 4, pp. 743–752, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. T. Uekita and R. Sakai, “Roles of CUB domain-containing protein 1 signaling in cancer invasion and metastasis,” Cancer Science, vol. 102, no. 11, pp. 1943–1948, 2011. View at Publisher · View at Google Scholar · View at PubMed
  12. T. Uekita, L. Jia, M. Narisawa-Saito, J. Yokota, T. Kiyono, and R. Sakai, “CUB domain-containing protein 1 is a novel regulator of anoikis resistance in lung adenocarcinoma,” Molecular and Cellular Biology, vol. 27, no. 21, pp. 7649–7660, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. H. Liu, S. E. Ong, K. Badu-Nkansah, J. Schindler, F. M. White, and R. O. Hynes, “CUB-domain—containing protein 1 (CDCP1) activates Src to promote melanoma metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1379–1384, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. M. E. Guicciardi and G. J. Gores, “Life and death by death receptors,” The FASEB Journal, vol. 23, no. 6, pp. 1625–1637, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. Chiarugi and E. Giannoni, “Anoikis: a necessary death program for anchorage-dependent cells,” Biochemical Pharmacology, vol. 76, no. 11, pp. 1352–1364, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. A. Marconi, P. Atzei, C. Panza et al., “FLICE/caspace-8 activation triggers anoikis induced by β 1-integrin blockade in human keratinocytes,” Journal of Cell Science, vol. 117, no. 24, pp. 5815–5823, 2004. View at Publisher · View at Google Scholar · View at PubMed
  17. F. Aoudjit and K. Vuori, “Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-Flip and implications for anoikis,” Journal of Cell Biology, vol. 153, no. 3, pp. 633–643, 2001. View at Google Scholar · View at Scopus
  18. D. G. Stupack, X. S. Puente, S. Boutsaboualoy, C. M. Storgard, and D. A. Cheresh, “Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins,” Journal of Cell Biology, vol. 155, no. 4, pp. 459–470, 2001. View at Google Scholar · View at Scopus
  19. I. A. Mawji, C. D. Simpson, M. Gronda et al., “A chemical screen identifies anisomycin as an anoikis sensitizer that functions by decreasing FLIP protein synthesis,” Cancer Research, vol. 67, no. 17, pp. 8307–8315, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. Chen, T. Li, Y. Wu et al., “Prognostic significance of vascular endothelial growth factor expression in gastric carcinoma: a meta-analysis,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 12, pp. 1799–1812, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. W. Hong-Xia, L. Xiu-Mei, H. Xiu-Hua, J. Ya-Jun, Z. Gui-Hua, and Z. Wan-Chuan, “Clinical significance of tissue factor and vascular endothelial growth factor expressions on CD14 + monocytes in patients with non-hodgkin lymphoma,” Zhongguo Yi Xue Ke Xue Yuan Xue Bao, vol. 33, no. 4, pp. 427–431, 2011. View at Publisher · View at Google Scholar · View at PubMed
  22. Y. z. Xu, Y. Zhu, Z. j. Shen et al., “Significance of heparanase-1 and vascular endothelial growth factor in adrenocortical carcinoma angiogenesis: potential for therapy,” Endocrine, vol. 40, no. 3, pp. 427–431, 2011. View at Google Scholar
  23. N. T. Woods, H. Yamaguchi, F. Y. Lee, K. N. Bhalla, and H. G. Wang, “Anoikis, initiated by MCL-1 degradation and Bim induction, is deregulated during oncogenesis,” Cancer Research, vol. 67, no. 22, pp. 10744–10752, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Y. Kim, B. N. Bae, J. E. Kwon, H. J. Kim, and K. Park, “Prognostic significance of epidermal growth factor receptor and vascular endothelial growth factor receptor in colorectal adenocarcinoma,” APMIS, vol. 119, no. 7, pp. 449–459, 2011. View at Publisher · View at Google Scholar · View at PubMed
  25. N. Fujimoto, K. Gemba, and T. Kishimoto, “Clinical significance of serum vascular endothelial growth factor in malignant pleural mesothelioma,” Journal of Thoracic Oncology, vol. 6, no. 5, pp. 971–972, 2011. View at Publisher · View at Google Scholar · View at PubMed
  26. D. Cheng, B. Liang, and H. Kong, “Clinical significance of vascular endothelial growth factor and endostatin levels in the differential diagnosis of malignant and benign ascites,” Medical Oncology. In press.
  27. M. J. Reginato, K. R. Mills, J. K. Paulus et al., “Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis,” Nature Cell Biology, vol. 5, no. 8, pp. 733–740, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. A. Whelan, S. A. Caldwell, K. S. Shahriari et al., “Hypoxia suppression of Bim and Bmf blocks anoikis and luminal clearing during mammary morphogenesis,” Molecular Biology of the Cell, vol. 21, no. 22, pp. 3829–3837, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. R. Kalluri and R. A. Weinberg, “The basics of epithelial-mesenchymal transition,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1420–1428, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. A. Nagafuchi, Y. Shirayoshi, and K. Okazaki, “Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA,” Nature, vol. 329, no. 6137, pp. 341–343, 1987. View at Google Scholar · View at Scopus
  31. K. M. Hajra and E. R. Fearon, “Cadherin and catenin alterations in human cancer,” Genes Chromosomes and Cancer, vol. 34, no. 3, pp. 255–268, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. B. De Craene, B. Gilbert, C. Stove, E. Bruyneel, F. Van Roy, and G. Berx, “The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program,” Cancer Research, vol. 65, no. 14, pp. 6237–6244, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. Shirakihara, M. Saitoh, and K. Miyazono, “Differential regulation of epithelial and mesenchymal markers by δEF1 proteins in epithelial-mesenchymal transition induced by TGF-β,” Molecular Biology of the Cell, vol. 18, no. 9, pp. 3533–3544, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. A. Mani, W. Guo, M. J. Liao et al., “The epithelial-mesenchymal transition generates cells with properties of stem cells,” Cell, vol. 133, no. 4, pp. 704–715, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. G. Li, K. Satyamoorthy, and M. Herlyn, “N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells,” Cancer Research, vol. 61, no. 9, pp. 3819–3825, 2001. View at Google Scholar · View at Scopus
  36. T. T. Onder, P. B. Gupta, S. A. Mani, J. Yang, E. S. Lander, and R. A. Weinberg, “Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways,” Cancer Research, vol. 68, no. 10, pp. 3645–3654, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. P. W. B. Derksen, X. Liu, F. Saridin et al., “Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis,” Cancer Cell, vol. 10, no. 5, pp. 437–449, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. J. Yang, S. A. Mani, J. L. Donaher et al., “Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis,” Cell, vol. 117, no. 7, pp. 927–939, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. A. Smit, T. R. Geiger, J. Y. Song, I. Gitelman, and D. S. Peeper, “A twist-snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis,” Molecular and Cellular Biology, vol. 29, no. 13, pp. 3722–3737, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Spaderna, O. Schmalhofer, M. Wahlbuhl et al., “The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer,” Cancer Research, vol. 68, no. 2, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. Y. Takeyama, M. Sato, M. Horio et al., “Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells,” Cancer Letters, vol. 296, no. 2, pp. 216–224, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. A. Smit and D. S. Peeper, “Zeb1 is required for TrkB-induced epithelial-mesenchymal transition, anoikis resistance and metastasis,” Oncogene, vol. 30, no. 35, pp. 3735–3744, 2011. View at Publisher · View at Google Scholar · View at PubMed
  43. S. Kumar, S. H. Park, B. Cieply et al., “A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition,” Molecular and Cellular Biology, vol. 31, no. 19, pp. 4036–4051, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. S. Shin, C. A. Dimitri, S. O. Yoon, W. Dowdle, and J. Blenis, “ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events,” Molecular Cell, vol. 38, no. 1, pp. 114–127, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. T. Shirakihara, K. Horiguchi, K. Miyazawa et al., “TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition,” EMBO Journal, vol. 30, no. 4, pp. 783–795, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. B. Hazan, R. Qiao, R. Keren, I. Badano, and K. Suyama, “Cadherin switch in tumor progression,” Annals of the New York Academy of Sciences, vol. 1014, pp. 155–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Araki, T. Shimura, H. Suzuki et al., “E/N-cadherin switch mediates cancer progression via TGF-β-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma,” British Journal of Cancer, vol. 105, no. 12, pp. 1885–1893, 2011. View at Publisher · View at Google Scholar · View at PubMed
  48. M. E. Diamond, L. Sun, A. J. Ottaviano, M. J. Joseph, and H. G. Munshi, “Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium,” Journal of Cell Science, vol. 121, no. 13, pp. 2197–2207, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. V. Sharma, D. W. Bell, J. Settleman, and D. A. Haber, “Epidermal growth factor receptor mutations in lung cancer,” Nature Reviews Cancer, vol. 7, no. 3, pp. 169–181, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. K. K. Haenssen, S. A. Caldwell, K. S. Shahriari et al., “ErbB2 requires integrin α5 for anoikis resistance via Src regulation of receptor activity in human mammary epithelial cells,” Journal of Cell Science, vol. 123, no. 8, pp. 1373–1382, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. R. Grassian, Z. T. Schafer, and J. S. Brugge, “ErbB2 stabilizes Epidermal Growth Factor Receptor (EGFR) expression via Erk and sprouty2 in extracellular matrix-detached cells,” Journal of Biological Chemistry, vol. 286, no. 1, pp. 79–90, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Z. T. Schafer, A. R. Grassian, L. Song et al., “Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment,” Nature, vol. 461, no. 7260, pp. 109–113, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. K. Rosen, M. L. Coll, A. Li, and J. Filmus, “Transforming growth factor-α prevents detachment-induced inhibition of c-Src kinase activity, Bcl-XL down-regulation, and apoptosis of intestinal epithelial cells,” Journal of Biological Chemistry, vol. 276, no. 40, pp. 37273–37279, 2001. View at Publisher · View at Google Scholar · View at PubMed
  54. H. G. Kang, J. M. Jenabi, J. Zhang et al., “E-cadherin cell-cell adhesion in Ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase,” Cancer Research, vol. 67, no. 7, pp. 3094–3105, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. T. L. Yuan and L. C. Cantley, “PI3K pathway alterations in cancer: variations on a theme,” Oncogene, vol. 27, no. 41, pp. 5497–5510, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. G. Yonglian, Z. Siwei, and Y. Zhangqun, “Induction of anoikis by phosphatase activity-dependent PTEN in human bladder transitional carcinoma cells BIU-87,” Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, vol. 2008, no. 5, 2008. View at Google Scholar
  57. M. A. Davies, Y. Lu, T. Sano et al., “Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis,” Cancer Research, vol. 58, no. 23, pp. 5285–5290, 1998. View at Google Scholar · View at Scopus
  58. M. I. Vitolo, M. B. Weiss, M. Szmacinski et al., “Deletion of PTEN promotes tumorigenic signaling, resistance to anoikis, and altered response to chemotherapeutic agents in human mammary epithelial cells,” Cancer Research, vol. 69, no. 21, pp. 8275–8283, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. T. Yu, R. G. Foster, and D. C. Dean, “Transcriptional repression by Rb-E2F and regulation of anchorage-independent survival,” Molecular and Cellular Biology, vol. 21, no. 10, pp. 3325–3335, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. Valentinis, A. Morrione, F. Peruzzi, M. Prisco, K. Reiss, and R. Baserga, “Anti-apoptotic signaling of the IGF-I receptor in fibroblasts following loss of matrix adhesion,” Oncogene, vol. 18, no. 10, pp. 1827–1836, 1999. View at Google Scholar · View at Scopus
  61. D. Sachdev, X. Zhang, I. Matise, M. Gaillard-Kelly, and D. Yee, “The type i insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival,” Oncogene, vol. 29, no. 2, pp. 251–262, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. R. F. Hwang, K. Yokoi, C. D. Bucana et al., “Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model,” Clinical Cancer Research, vol. 9, no. 17, pp. 6534–6544, 2003. View at Google Scholar · View at Scopus
  63. N. G. Dolloff, S. S. Shulby, A. V. Nelson et al., “Bone-metastatic potential of human prostate cancer cells correlates with Akt/PKB activation by α platelet-derived growth factor receptor,” Oncogene, vol. 24, no. 45, pp. 6848–6854, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. B. Westermark, A. Johnsson, and Y. Paulsson, “Human melanoma cell lines of primary and metastatic origin express the genes encoding the chains of platelet-derived growth factor (PDGF) and produce a PDGF-like growth factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 19, pp. 7197–7200, 1986. View at Google Scholar
  65. L. Wei, Y. Yang, X. Zhang, and Q. Yu, “Altered regulation of Src upon cell detachment protects human lung adenocarcinoma cells from anoikis,” Oncogene, vol. 23, no. 56, pp. 9052–9061, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. Jechlinger, A. Sommer, R. Moriggl et al., “Autocrine PDGFR signaling promotes mammary cancer metastasis,” Journal of Clinical Investigation, vol. 116, no. 6, pp. 1561–1570, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. J. C. Horowitz, D. S. Rogers, V. Sharma et al., “Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts,” Cellular Signalling, vol. 19, no. 4, pp. 761–771, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. S. Uttamsingh, X. Bao, K. T. Nguyen et al., “Synergistic effect between EGF and TGF-β1 in inducing oncogenic properties of intestinal epithelial cells,” Oncogene, vol. 27, no. 18, pp. 2626–2634, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. Melisi, S. Ishiyama, G. M. Sclabas et al., “LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 829–840, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. W. Xian, L. Pappas, D. Pandya et al., “Fibroblast growth factor receptor 1-Transformed mammary epithelial cells are dependent on RSK activity for growth and survival,” Cancer Research, vol. 69, no. 6, pp. 2244–2251, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. Q. Zeng, S. Chen, Z. You et al., “Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFκB,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25203–25208, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. S. Watanabe, T. Kishimoto, and O. Yokosuka, “Hepatocyte growth factor inhibits anoikis of pancreatic carcinoma cells through phosphatidylinositol 3-kinase pathway,” Pancreas, vol. 40, no. 4, pp. 608–614, 2011. View at Publisher · View at Google Scholar · View at PubMed
  73. I. Sher, S. A. Adham, J. Petrik, and B. L. Coomber, “Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis,” International Journal of Cancer, vol. 124, no. 3, pp. 553–561, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. R. A. Cairns, I. S. Harris, and T. W. Mak, “Regulation of cancer cell metabolism,” Nature Reviews Cancer, vol. 11, no. 2, pp. 85–95, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Google Scholar · View at Scopus
  76. R. L. Elstrom, D. E. Bauer, M. Buzzai et al., “Akt stimulates aerobic glycolysis in cancer cells,” Cancer Research, vol. 64, no. 11, pp. 3892–3899, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. Y. Fan, K. G. Dickman, and W. X. Zong, “Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition,” Journal of Biological Chemistry, vol. 285, no. 10, pp. 7324–7333, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. G. L. Semenza, P. H. Roth, H. M. Fang, and G. L. Wang, “Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 269, no. 38, pp. 23757–23763, 1994. View at Google Scholar · View at Scopus
  79. G. L. Semenza, B. H. Jiang, S. W. Leung et al., “Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1,” Journal of Biological Chemistry, vol. 271, no. 51, pp. 32529–32537, 1996. View at Google Scholar · View at Scopus
  80. A. Minchenko, I. Leshchinsky, I. Opentanova et al., “Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene: its possible role in the warburg effect,” Journal of Biological Chemistry, vol. 277, no. 8, pp. 6183–6187, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. J. W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang, “HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia,” Cell Metabolism, vol. 3, no. 3, pp. 177–185, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. C. W. Lu, S. C. Lin, K. F. Chen, Y. Y. Lai, and S. J. Tsai, “Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance,” Journal of Biological Chemistry, vol. 283, no. 42, pp. 28106–28114, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. K. Bensaad, A. Tsuruta, M. A. Selak et al., “TIGAR, a p53-inducible regulator of glycolysis and apoptosis,” Cell, vol. 126, no. 1, pp. 107–120, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. K. H. Vousden and K. M. Ryan, “P53 and metabolism,” Nature Reviews Cancer, vol. 9, no. 10, pp. 691–700, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. S. Matoba, J. G. Kang, W. D. Patino et al., “p53 regulates mitochondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–1653, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. J. W. Kim, P. Gao, Y. C. Liu, G. L. Semenza, and C. V. Dang, “Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1,” Molecular and Cellular Biology, vol. 27, no. 21, pp. 7381–7393, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. C. V. Dang, A. Le, and P. Gao, “MYC-induced cancer cell energy metabolism and therapeutic opportunities,” Clinical Cancer Research, vol. 15, no. 21, pp. 6479–6483, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. R. G. Jones, D. R. Plas, S. Kubek et al., “AMP-activated protein kinase induces a p53-dependent metabolic checkpoint,” Molecular Cell, vol. 18, no. 3, pp. 283–293, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. H. Ji, M. R. Ramsey, D. N. Hayes et al., “LKB1 modulates lung cancer differentiation and metastasis,” Nature, vol. 448, no. 7155, pp. 807–810, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. D. B. Shackelford and R. J. Shaw, “The LKB1-AMPK pathway: metabolism and growth control in tumour suppression,” Nature Reviews Cancer, vol. 9, no. 8, pp. 563–575, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. C. Fung, R. Lock, S. Gao, E. Salas, and J. Debnath, “Induction of autophagy during extracellular matrix detachment promotes cell survival,” Molecular Biology of the Cell, vol. 19, no. 3, pp. 797–806, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. E. Gottlieb, “Cancer: the fat and the furious,” Nature, vol. 461, no. 7260, pp. 44–45, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. R. Lock and J. Debnath, “Extracellular matrix regulation of autophagy,” Current Opinion in Cell Biology, vol. 20, no. 5, pp. 583–588, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. M. T. Rosenfeldt and K. M. Ryan, “The multiple roles of autophagy in cancer,” Carcinogenesis, vol. 32, no. 7, pp. 955–963, 2011. View at Publisher · View at Google Scholar · View at PubMed
  95. R. Lock, S. Roy, C. M. Kenific et al., “Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation,” Molecular Biology of the Cell, vol. 22, no. 2, pp. 165–178, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. M. A. Loza-Coll, S. Perera, W. Shi, and J. Filmus, “A transient increase in the activity of Src-family kinases induced by cell detachment delays anoikis of intestinal epithelial cells,” Oncogene, vol. 24, no. 10, pp. 1727–1737, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. E. Giannoni, T. Fiaschi, G. Ramponi, and P. Chiarugi, “Redox regulation of anoikis resistance of metastatic prostate cancer cells: key role for Src and EGFR-mediated pro-survival signals,” Oncogene, vol. 28, no. 20, pp. 2074–2086, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. P. Zhu, M. J. Tan, R. L. Huang et al., “Angiopoietin-like 4 protein elevates the prosurvival intracellular O2-:H2O2 ratio and confers anoikis resistance to tumors,” Cancer Cell, vol. 19, no. 3, pp. 401–415, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. M. C. Guadamillas, A. Cerezo, and M. A. del Pozo, “Overcoming anoikis—pathways to anchorageindependent growth in cancer,” Journal of Cell Science, vol. 124, no. 19, pp. 3189–3197, 2011. View at Publisher · View at Google Scholar · View at PubMed
  100. P. G. Lloyd and C. D. Hardin, “Caveolae in cancer: two sides of the same coin? Focus on "Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation",” American Journal of Physiology, vol. 300, no. 2, pp. C232–C234, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. S. Staubach and F. G. Hanisch, “Lipid rafts: signaling and sorting platforms of cells and their roles in cancer,” Expert Review of Proteomics, vol. 8, no. 2, pp. 263–277, 2011. View at Publisher · View at Google Scholar · View at PubMed
  102. G. Fiucci, D. Ravid, R. Reich, and M. Liscovitch, “Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells,” Oncogene, vol. 21, no. 15, pp. 2365–2375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. T. C. Thompson, S. A. Tahir, L. Li et al., “The role of caveolin-1 in prostate cancer: clinical implications,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 1, pp. 6–11, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. S. Luanpitpong, S. J. Talbott, Y. Rojanasakul et al., “Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1,” Journal of Biological Chemistry, vol. 285, no. 50, pp. 38832–38840, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. D. Ravid, S. Maor, H. Werner, and M. Liscovitch, “Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells,” Advances in Enzyme Regulation, vol. 46, no. 1, pp. 163–175, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. P. Chanvorachote, U. Nimmannit, Y. Lu, S. Talbott, B. H. Jiang, and Y. Rojanasakul, “Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28476–28484, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. P. Rungtabnapa, U. Nimmannit, H. Halim, Y. Rojanasakul, and P. Chanvorachote, “Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation,” American Journal of Physiology, vol. 300, no. 2, pp. C235–C245, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. M. A. Del Pozo, N. B. Alderson, W. B. Kiosses, H. H. Chiang, R. G. W. Anderson, and M. A. Schwartz, “Integrins regulate rac targeting by internalization of membrane domains,” Science, vol. 303, no. 5659, pp. 839–842, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. E. K. Park, J. P. Mi, S. H. Lee et al., “Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization,” Journal of Pathology, vol. 218, no. 3, pp. 337–349, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. Y. C. Li, M. J. Park, S. K. Ye, C. W. Kim, and Y. N. Kim, “Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents,” American Journal of Pathology, vol. 168, no. 4, pp. 1107–1118, 2006. View at Publisher · View at Google Scholar · View at PubMed
  111. Y. N. Kim, G. J. Wiepz, A. G. Guadarrama, and P. J. Bertics, “Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin- 1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status,” Journal of Biological Chemistry, vol. 275, no. 11, pp. 7481–7491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  112. M. A. del Pozo, N. Balasubramanian, N. B. Alderson et al., “Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization,” Nature Cell Biology, vol. 7, no. 9, pp. 901–908, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. S. H. Lee, K. H. Koo, J. W. Park et al., “HIF-1 is induced via EGFR activation and mediates resistance to anoikis-like cell death under lipid rafts/caveolae-disrupting stress,” Carcinogenesis, vol. 30, no. 12, pp. 1997–2004, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. Q. Huang, H. M. Shen, G. Shui, M. R. Wenk, and C. N. Ong, “Emodin inhibits tumor cell adhesion through disruption of the membrane lipid raft-associated integrin signaling pathway,” Cancer Research, vol. 66, no. 11, pp. 5807–5815, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. J. Cai, X. Niu, Y. Chen et al., “Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis,” Neoplasia, vol. 10, no. 1, pp. 41–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Z. Lee, W. H. Yang, M. J. Hour et al., “Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis,” European Journal of Pharmacology, vol. 648, no. 1–3, pp. 50–58, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. R. Lasserre, X. J. Guo, F. Conchonaud et al., “Raft nanodomains contribute to Akt/PKB plasma membrane recruitment and activation,” Nature Chemical Biology, vol. 4, no. 9, pp. 538–547, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus