Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013 (2013), Article ID 243876, 14 pages
http://dx.doi.org/10.1155/2013/243876
Research Article

Mitochondrial Complex I Inhibitors and Forced Oxidative Phosphorylation Synergize in Inducing Cancer Cell Death

1Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
2SysBio Centre of Systems Biology, Piazza della Scienza 2, 20126 Milan, Italy

Received 2 December 2012; Revised 22 February 2013; Accepted 28 February 2013

Academic Editor: Claudia Cerella

Copyright © 2013 Roberta Palorini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, “The biology of cancer: metabolic reprogramming fuels cell growth and proliferation,” Cell Metabolism, vol. 7, no. 1, pp. 11–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Chiaradonna, R. M. Moresco, C. Airoldi, D. Gaglio, R. Palorini, F. Nicotra et al., “From cancer metabolism to new biomarkers and drug targets,” Biotechnology Advances, vol. 30, no. 1, pp. 30–51, 2012. View at Google Scholar
  4. R. G. Jones and C. B. Thompson, “Tumor suppressors and cell metabolism: a recipe for cancer growth,” Genes and Development, vol. 23, no. 5, pp. 537–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. P. P. Hsu and D. M. Sabatini, “Cancer cell metabolism: warburg and beyond,” Cell, vol. 134, no. 5, pp. 703–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Lu, L. K. Sharma, and Y. Bai, “Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis,” Cell Research, vol. 19, no. 7, pp. 802–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Ralph, P. Low, L. Dong, A. Lawen, and J. Neuzil, “Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents,” Recent Patents on Anti-Cancer Drug Discovery, vol. 1, no. 3, pp. 327–346, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Biasutto, L. F. Dong, M. Zoratti, and J. Neuzil, “Mitochondrially targeted anti-cancer agents,” Mitochondrion, vol. 10, no. 6, pp. 670–681, 2010. View at Google Scholar
  9. J. Neuzil, J. C. Dyason, R. Freeman et al., “Mitocans as anti-cancer agents targeting mitochondria: lessons from studies with vitamin e analogues, inhibitors of complex II,” Journal of Bioenergetics and Biomembranes, vol. 39, no. 1, pp. 65–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Pathania, M. Millard, and N. Neamati, “Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism,” Advanced Drug Delivery Reviews, vol. 61, no. 14, pp. 1250–1275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Pelicano, D. S. Martin, R. H. Xu, and P. Huang, “Glycolysis inhibition for anticancer treatment,” Oncogene, vol. 25, no. 34, pp. 4633–4646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. N. El Mjiyad, A. Caro-Maldonado, S. Ramírez-Peinado, and C. Mũoz-Pinedo, “Sugar-free approaches to cancer cell killing,” Oncogene, vol. 30, no. 3, pp. 253–264, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Graham, M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu, I. Vivanco et al., “Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death,” Molecular Systems Biology, vol. 8, article 589, 2012. View at Google Scholar
  14. A. L. Simons, D. M. Mattson, K. Dornfeld, and D. R. Spitz, “Glucose deprivation-induced metabolic oxidative stress and cancer therapy,” Journal of Cancer Research and Therapeutics, vol. 5, supplement 1, pp. S2–S6, 2009. View at Google Scholar
  15. R. Palorini, D. De Rasmo, M. Gaviraghi, L. Sala Danna, A. Signorile, C. Cirulli et al., “Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration,” Oncogene, vol. 32, no. 3, pp. 352–362, 2013. View at Google Scholar
  16. H. Liu, Y. P. Hu, N. Savaraj, W. Priebe, and T. J. Lampidis, “Hypersensitization of tumor cells to glycolytic inhibitors,” Biochemistry, vol. 40, no. 18, pp. 5542–5547, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Fath, A. R. Diers, N. Aykin-Burns, A. L. Simons, L. Hua, and D. R. Spitz, “Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells,” Cancer Biology and Therapy, vol. 8, no. 13, pp. 1228–1236, 2009. View at Google Scholar · View at Scopus
  18. S. Bonnet, S. L. Archer, J. Allalunis-Turner et al., “A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth,” Cancer Cell, vol. 11, no. 1, pp. 37–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Chiaradonna, C. Balestrieri, D. Gaglio, and M. Vanoni, “RAS and PKA pathways in cancer: new insight from transcriptional analysis,” Frontiers in Bioscience, vol. 13, pp. 5257–5278, 2008. View at Google Scholar · View at Scopus
  20. K. B. Seamon, W. Padgett, and J. W. Daly, “Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 6, pp. 3363–3367, 1981. View at Google Scholar · View at Scopus
  21. Y. N. Seon, A. A. Amoscato, and Y. J. Lee, “Low glucose-enhanced TRAIL cytotoxicity is mediated through the ceramide-Akt-FLIP pathway,” Oncogene, vol. 21, no. 3, pp. 337–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Yun, C. Rago, I. Cheong et al., “Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells,” Science, vol. 325, no. 5947, pp. 1555–1559, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Chiaradonna, E. Sacco, R. Manzoni, M. Giorgio, M. Vanoni, and L. Alberghina, “Ras-dependent carbon metabolism and transformation in mouse fibroblasts,” Oncogene, vol. 25, no. 39, pp. 5391–5404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Gaglio, C. M. Metallo, P. A. Gameiro, K. Hiller, L. S. Danna, and C. Balestrieri, “Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth,” Molecular Systems Biology, vol. 7, article 523, 2011. View at Google Scholar
  25. Y. T. Deng, H. C. Huang, and J. K. Lin, “Rotenone induces apoptosis in MCF-7 human breast cancer cell-mediated ROS through JNK and p38 signaling,” Molecular Carcinogenesis, vol. 49, no. 2, pp. 141–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Bernard, N. Bellance, D. James et al., “Mitochondrial bioenergetics and structural network organization,” Journal of Cell Science, vol. 120, no. 5, pp. 838–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson's disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. W. S. Choi, R. D. Palmiter, and Z. Xia, “Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model,” Journal of Cell Biology, vol. 192, no. 5, pp. 873–882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Li, K. Ragheb, G. Lawler et al., “Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production,” Journal of Biological Chemistry, vol. 278, no. 10, pp. 8516–8525, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Balestrieri, M. Vanoni, S. Hautaniemi, L. Alberghina, and F. Chiaradonna, “Integrative transcriptional analysis between human and mouse cancer cells provides a common set of transformation associated genes,” Biotechnology Advances, vol. 30, no. 1, pp. 16–29, 2011. View at Google Scholar
  31. F. Chiaradonna, D. Gaglio, M. Vanoni, and L. Alberghina, “Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts,” Biochimica et Biophysica Acta, vol. 1757, no. 9-10, pp. 1338–1356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. J. G. Okun, P. Lümmen, and U. Brandt, “Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:Ubiquinone oxidoreductase),” Journal of Biological Chemistry, vol. 274, no. 5, pp. 2625–2630, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. J. S. Armstrong, B. Hornung, P. Lecane, D. P. Jones, and S. J. Knox, “Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW,” Biochemical and Biophysical Research Communications, vol. 289, no. 5, pp. 973–978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Srivastava and D. Panda, “Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding,” FEBS Journal, vol. 274, no. 18, pp. 4788–4801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. L. Edinger and C. B. Thompson, “Death by design: apoptosis, necrosis and autophagy,” Current Opinion in Cell Biology, vol. 16, no. 6, pp. 663–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Zaccagnino, A. Corcelli, M. Baronio, and M. Lorusso, “Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria,” FEBS Letters, vol. 585, no. 2, pp. 429–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Alberghina, D. Gaglio, C. Gelfi, R. M. Moresco, G. Mauri, P. Bertolazzi et al., “Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling,” Frontiers in Physiology, vol. 3, article 362, 2012. View at Google Scholar
  38. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene, vol. 25, no. 34, pp. 4706–4716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. T. J. Schulz, R. Thierbach, A. Voigt et al., “Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: otto Warburg revisited,” Journal of Biological Chemistry, vol. 281, no. 2, pp. 977–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Hervouet, J. Demont, P. Pecina et al., “A new role for the von Hippel-Lindau tumor suppressor protein: stimulation of mitochondrial oxidative phosphorylation complex biogenesis,” Carcinogenesis, vol. 26, no. 3, pp. 531–539, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. C. Pramanik, S. R. Boreddy, and S. K. Srivastava, “Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells,” PLoS ONE, vol. 6, no. 5, Article ID e20151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. J. Levine and A. M. Puzio-Kuter, “The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes,” Science, vol. 330, no. 6009, pp. 1340–1344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Le, C. R. Cooper, A. M. Gouw, R. Dinavahi, A. Maitra, L. M. Deck et al., “Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2037–2042, 2010. View at Google Scholar
  44. M. Campanella, N. Parker, C. H. Tan, A. M. Hall, and M. R. Duchen, “IF1: setting the pace of the F1Fo-ATP synthase,” Trends in Biochemical Sciences, vol. 34, no. 7, pp. 343–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Wu, A. Neilson, A. L. Swift et al., “Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells,” American Journal of Physiology, vol. 292, no. 1, pp. C125–C136, 2007. View at Publisher · View at Google Scholar · View at Scopus