Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 260787, 9 pages
http://dx.doi.org/10.1155/2013/260787
Research Article

Trimeric Tau Is Toxic to Human Neuronal Cells at Low Nanomolar Concentrations

1Department of Chemical Engineering, Arizona State University, P. O. Box 876106, Tempe, AZ 85287-6106, USA
2Oligomerix, Inc., 3960 Broadway, New York, NY 10032, USA

Received 14 May 2013; Revised 1 August 2013; Accepted 8 August 2013

Academic Editor: Alessio Cardinale

Copyright © 2013 Huilai Tian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Alzheimer's Association, “2012 Alzheimer's disease facts and figures,” Alzheimer's and Dementia, vol. 8, no. 2, pp. 131–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Alzheimer, “Über eine eigenartige Erkankung der Hirnrinde,” Allgemeine Zeitschrift fur Psychiatrie und Phychish-Gerichtliche Medizin, vol. 64, pp. 146–148, 1907. View at Google Scholar
  3. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Gilman, M. Koller, R. S. Black et al., “Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial,” Neurology, vol. 64, no. 9, pp. 1553–1562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Blennow, H. Zetterberg, J. O. Rinne et al., “Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease,” Archives of Neurology, vol. 69, no. 8, pp. 1002–1010, 2012. View at Google Scholar
  6. G. B. Freeman, J. C. Lin, J. Pons, and N. M. Raha, “39-week toxicity and toxicokinetic study of ponezumab (PF-04360365) in cynomolgus monkeys with 12-week recovery period,” Journal of Alzheimer's Disease, vol. 28, no. 3, pp. 531–541, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Castellani and G. Perry, “Pathogenesis and disease-modifying therapy in Alzheimer's disease: the flat line of progress,” Archives of Medical Research, vol. 43, no. 8, pp. 694–698, 2012. View at Publisher · View at Google Scholar
  8. H. Braak and K. Del Tredici, “The pathological process underlying Alzheimer's disease in individuals under thirty,” Acta Neuropathologica, vol. 121, no. 2, pp. 171–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Braak and E. Braak, “Frequency of stages of Alzheimer-related lesions in different age categories,” Neurobiology of Aging, vol. 18, no. 4, pp. 351–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Oddo, V. Vasilevko, A. Caccamo, M. Kitazawa, D. H. Cribbs, and F. M. LaFerla, “Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic mice with plaques and tangles,” The Journal of Biological Chemistry, vol. 281, no. 51, pp. 39413–39423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, “A protein factor essential for microtubule assembly,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 5, pp. 1858–1862, 1975. View at Google Scholar · View at Scopus
  12. G. B. Witman, D. W. Cleveland, M. D. Weingarten, and M. W. Kirschner, “Tubulin requires tau for growth into microtubule initiating sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 11, pp. 4070–4074, 1976. View at Google Scholar · View at Scopus
  13. E. M. Mandelkow and E. Mandelkow, “Tau in Alzheimer's disease,” Trends in Cell Biology, vol. 8, no. 11, pp. 425–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. L. A. Amos, “Microtubule structure and its stabilisation,” Organic and Biomolecular Chemistry, vol. 2, no. 15, pp. 2153–2160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E.-. Mandelkow, and E. Mandelkow, “Assembly of τ protein into Alzheimer paired helical filaments depends a local sequence motif (306VQIVYK311) forming β structure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5129–5134, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Thies and E. M. Mandelkow, “Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1,” Journal of Neuroscience, vol. 27, no. 11, pp. 2896–2907, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Díaz-Hernández, A. Gómez-Ramos, A. Rubio et al., “Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau,” The Journal of Biological Chemistry, vol. 285, no. 42, pp. 32539–32548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Pooler, E. C. Phillips, D. H. Lau, W. Noble, and D. P. Hanger, “Physiological release of endogenous tau is stimulated by neuronal activity,” EMBO Reports, vol. 14, no. 4, pp. 389–394, 2013. View at Publisher · View at Google Scholar
  19. C. A. Lasagna-Reeves, D. L. Castillo-Carranza, U. Sengupta, A. L. Clos, G. R. Jackson, and R. Kayed, “Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice,” Molecular Neurodegeneration, vol. 6, no. 1, article 39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. Guillozet, S. Weintraub, D. C. Mash, and M. M. Mesulam, “Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment,” Archives of Neurology, vol. 60, no. 5, pp. 729–736, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Morris, S. Maeda, K. Vossel, and L. Mucke, “The many faces of tau,” Neuron, vol. 70, no. 3, pp. 410–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Kayed, E. Head, J. L. Thompson et al., “Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis,” Science, vol. 300, no. 5618, pp. 486–489, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. C. A. Lasagna-Reeves, D. L. Castillo-Carranza, U. Sengupta et al., “Identification of oligomers at early stages of tau aggregation in Alzheimer's disease,” The FASEB Journal, vol. 26, no. 5, pp. 1946–1959, 2012. View at Publisher · View at Google Scholar
  25. R. Morsch, W. Simon, and P. D. Coleman, “Neurons may live for decades with neurofibrillary tangles,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 2, pp. 188–197, 1999. View at Google Scholar · View at Scopus
  26. J. H. Kordower, Y. Chu, G. T. Stebbins et al., “Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment,” Annals of Neurology, vol. 49, no. 2, pp. 202–213, 2001. View at Google Scholar
  27. K. R. Brunden, J. Q. Trojanowski, and V. M. Lee, “Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments,” Journal of Alzheimer's Disease, vol. 14, no. 4, pp. 393–399, 2008. View at Google Scholar · View at Scopus
  28. K. Santacruz, J. Lewis, T. Spires et al., “Medicine: tau suppression in a neurodegenerative mouse model improves memory function,” Science, vol. 309, no. 5733, pp. 476–481, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Andorfer, Y. Kress, M. Espinoza et al., “Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms,” Journal of Neurochemistry, vol. 86, no. 3, pp. 582–590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Leroy, A. Bretteville, K. Schindowski et al., “Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice,” The American Journal of Pathology, vol. 171, no. 3, pp. 976–992, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. L. Spires, J. D. Orne, K. SantaCruz et al., “Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy,” The American Journal of Pathology, vol. 168, no. 5, pp. 1598–1607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Yoshiyama, M. Higuchi, B. Zhang et al., “Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model,” Neuron, vol. 53, no. 3, pp. 337–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Berger, H. Roder, A. Hanna et al., “Accumulation of pathological tau species and memory loss in a conditional model of tauopathy,” Journal of Neuroscience, vol. 27, no. 14, pp. 3650–3662, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Maeda, N. Sahara, Y. Saito, S. Murayama, A. Ikai, and A. Takashima, “Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease,” Neuroscience Research, vol. 54, no. 3, pp. 197–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Sahara, S. Maeda, and A. Takashima, “Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration,” Current Alzheimer Research, vol. 5, no. 6, pp. 591–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Ward, D. S. Himmelstein, J. K. Lancia, and L. I. Binder, “Tau oligomers and tau toxicity in neurodegenerative disease,” Biochemical Society Transactions, vol. 40, no. 4, pp. 667–671, 2012. View at Publisher · View at Google Scholar
  37. C. A. Lasagna-Reeves, D. L. Castillo-Carranza, U. Sengupta et al., “Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau,” Scientific Reports, vol. 2, article 700, 2012. View at Publisher · View at Google Scholar
  38. J. Genius, H. Klafki, J. Benninghoff, H. Esselmann, and J. Wiltfang, “Current application of neurochemical biomarkers in the prediction and differential diagnosis of Alzheimer's disease and other neurodegenerative dementias,” European Archives of Psychiatry and Clinical Neurosciences, vol. 262, supplement 2, pp. S71–S77, 2012. View at Publisher · View at Google Scholar
  39. H. Barkhordarian, S. Emadi, P. Schulz, and M. R. Sierks, “Isolating recombinant antibodies against specific protein morphologies using atomic force microscopy and phage display technologies,” Protein Engineering, Design and Selection, vol. 19, no. 11, pp. 497–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Zameer, P. Schulz, M. S. Wang, and M. R. Sierks, “Single chain Fv antibodies against the 25-35 Aβ fragment inhibit aggregation and toxicity of Aβ42,” Biochemistry, vol. 45, no. 38, pp. 11532–11539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Emadi, H. Barkhordarian, M. S. Wang, P. Schulz, and M. R. Sierks, “Isolation of a human single chain antibody fragment against oligomeric α-synuclein that inhibits aggregation and prevents α-synuclein-induced toxicity,” Journal of Molecular Biology, vol. 368, no. 4, pp. 1132–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Zameer, S. Kasturirangan, S. Emadi, S. V. Nimmagadda, and M. R. Sierks, “Anti-oligomeric Aβ single-chain variable domain antibody blocks Aβ-induced toxicity against human neuroblastoma cells,” Journal of Molecular Biology, vol. 384, no. 4, pp. 917–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Emadi, S. Kasturirangan, M. S. Wang, P. Schulz, and M. R. Sierks, “Detecting morphologically distinct oligomeric forms of α-synuclein,” The Journal of Biological Chemistry, vol. 284, no. 17, pp. 11048–11058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. M. S. Wang, A. Zameer, S. Emadi, and M. R. Sierks, “Characterizing antibody specificity to different protein morphologies by AFM,” Langmuir, vol. 25, no. 2, pp. 912–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Pahlman, J. C. Hoehner, E. Nanberg et al., “Differentiation and survival influences of growth factors in human neuroblastoma,” European Journal of Cancer A, vol. 31, no. 4, pp. 453–458, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Encinas, M. Iglesias, Y. Liu et al., “Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells,” Journal of Neurochemistry, vol. 75, no. 3, pp. 991–1003, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. S. P. Presgraves, T. Ahmed, S. Borwege, and J. N. Joyce, “Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists,” Neurotoxicity Research, vol. 5, no. 8, pp. 579–598, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Decker and M. L. Lohmann-Matthes, “A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity,” Journal of Immunological Methods, vol. 115, no. 1, pp. 61–69, 1988. View at Google Scholar · View at Scopus
  49. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  50. S. T. Ferreira, M. N. N. Vieira, and F. G. de Felice, “Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases,” IUBMB Life, vol. 59, no. 4-5, pp. 332–345, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. N. H. Varvel, K. Bhaskar, A. R. Patil, S. W. Pimplikar, K. Herrup, and B. T. Lamb, “Aβ oligomers induce neuronal cell cycle events in Alzheimer's disease,” Journal of Neuroscience, vol. 28, no. 43, pp. 10786–10793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Kasturirangan, T. Reasoner, P. Schulz et al., “Isolation and characterization of antibody fragments selective for specific protein morphologies from nanogram antigen samples,” Biotechnology Progress, vol. 29, no. 2, pp. 463–471, 2013. View at Publisher · View at Google Scholar
  53. M. R. Sierks, G. Chatterjee, C. McGraw, S. Kasturirangan, P. Schulz, and S. Prasad, “CSF levels of oligomeric alpha-synuclein and β-amyloid as biomarkers for neurodegenerative disease,” Integrative Biology, vol. 3, no. 12, pp. 1188–1196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Andorfer, C. M. Acker, Y. Kress, P. R. Hof, K. Duff, and P. Davies, “Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms,” Journal of Neuroscience, vol. 25, no. 22, pp. 5446–5454, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Belarbi, K. Schindowski, S. Burnouf et al., “Early tau pathology involving the septo-hippocampal pathway in a tau transgenic model: relevance to alzheimer's disease,” Current Alzheimer Research, vol. 6, no. 2, pp. 152–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. D. C. Alonso, A. Mederlyova, M. Novak, I. Grundke-Iqbal, and K. Iqbal, “Promotion of hyperphosphorylation by frontotemporal dementia tau mutations,” The Journal of Biological Chemistry, vol. 279, no. 33, pp. 34873–34881, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Braak, U. Rüb, C. Schultz, and K. Del Tredici, “Vulnerability of cortical neurons to Alzheimer's and Parkinson's diseases,” Journal of Alzheimer's Disease, vol. 9, no. 3, supplement, pp. 35–44, 2006. View at Google Scholar · View at Scopus
  58. R. Schliebs and T. Arendt, “The cholinergic system in aging and neuronal degeneration,” Behavioural Brain Research, vol. 221, no. 2, pp. 555–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. J. W. Wu, M. Herman, L. Liu et al., “Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons,” The Journal of Biological Chemistry, vol. 288, no. 3, pp. 1856–1870, 2013. View at Publisher · View at Google Scholar
  60. C. G. Glabe, “Common mechanisms of amyloid oligomer pathogenesis in degenerative disease,” Neurobiology of Aging, vol. 27, no. 4, pp. 570–575, 2006. View at Publisher · View at Google Scholar · View at Scopus