Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 560421, 18 pages
http://dx.doi.org/10.1155/2013/560421
Research Article

Early Delivery of Misfolded PrP from ER to Lysosomes by Autophagy

1Departments of Neurology, MC2030, The University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
2Departments of Neurobiology, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA

Received 12 May 2013; Accepted 20 September 2013

Academic Editor: Roberto Chiesa

Copyright © 2013 Constanza J. Cortes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. B. Prusiner, “Prions (Les Prix Nobel Lecture),” in Les Prix Nobel, T. Frängsmyr, Ed., pp. 268–323, Almqvist & Wiksell International, Stockholm, Sweden, 1998. View at Google Scholar
  2. A. M. Cuervo, “Autophagy: many paths to the same end,” Molecular and Cellular Biochemistry, vol. 263, no. 1-2, pp. 55–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Klionsky, J. M. Cregg, W. A. Dunn Jr. et al., “A unified nomenclature for yeast autophagy-related genes,” Developmental Cell, vol. 5, no. 4, pp. 539–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Mizushima, Y. Ohsumi, and T. Yoshimori, “Autophagosome formation in mammalian cells,” Cell Structure and Function, vol. 27, no. 6, pp. 421–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. X. H. Liang, S. Jackson, M. Seaman et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1,” Nature, vol. 402, no. 6762, pp. 672–676, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Kabeya, N. Mizushima, T. Ueno et al., “LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing,” The EMBO Journal, vol. 19, no. 21, pp. 5720–5728, 2000. View at Google Scholar · View at Scopus
  7. N. Mizushima, T. Noda, T. Yoshimori et al., “A protein conjugation system essential for autophagy,” Nature, vol. 395, no. 6700, pp. 395–398, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Nixon, J. Wegiel, A. Kumar et al., “Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 2, pp. 113–122, 2005. View at Google Scholar · View at Scopus
  9. M. Shibata, T. Lu, T. Furuya et al., “Regulation of intracellular accumulation of mutant huntingtin by beclin 1,” The Journal of Biological Chemistry, vol. 281, no. 20, pp. 14474–14485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, “α-synuclein is degraded by both autophagy and the proteasome,” The Journal of Biological Chemistry, vol. 278, no. 27, pp. 25009–25013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Aguib, A. Heiseke, S. Gilch et al., “Autophagy induction by trehalose counteracts cellular prion infection,” Autophagy, vol. 5, no. 3, pp. 361–369, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Heiseke, Y. Aguib, C. Riemer, M. Baier, and H. M. Schätzl, “Lithium induces clearance of protease resistant prion protein in prion-infected cells by induction of autophagy,” Journal of Neurochemistry, vol. 109, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Cortes, K. Qin, J. Cook, A. Solanki, and J. A. Mastrianni, “Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of gerstmann-straussler-scheinker disease,” The Journal of Neuroscience, vol. 32, no. 36, pp. 12396–12405, 2012. View at Google Scholar
  14. E. Grasbon-Frodl, H. Lorenz, U. Mann, R. M. Nitsch, O. Windl, and H. A. Kretzschmar, “Loss of glycosylation associated with the T183A mutation in human prion disease,” Acta Neuropathologica, vol. 108, no. 6, pp. 476–484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Nitrini, S. Rosemberg, M. R. Passos-Bueno et al., “Familial spongiform encephalopathy associated with a novel prion protein gene mutation,” Annals of Neurology, vol. 42, no. 2, pp. 138–146, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Capellari, S. I. A. Zaidi, A. C. Long, E. E. Kwon, and R. B. Petersen, “The Thr183Ala mutation, not the loss of the first glycosylation site, alters the physical properties of the prion protein,” Journal of Alzheimer's Disease, vol. 2, no. 1, pp. 27–35, 2000. View at Google Scholar · View at Scopus
  17. S. J. DeArmond, H. Sánchez, F. Yehiely et al., “Selective neuronal targeting in prion disease,” Neuron, vol. 19, no. 6, pp. 1337–1348, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kiachopoulos, J. Heske, J. Tatzelt, and K. F. Winklhofer, “Misfolding of the prion protein at the plasma membrane induces endocytosis, intracellular retention and degradation,” Traffic, vol. 5, no. 6, pp. 426–436, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lehmann and D. A. Harris, “Blockade of glycosylation promotes acquistion of scrapie-like properties by the prion protein in cultured cells,” The Journal of Biological Chemistry, vol. 272, no. 34, pp. 21479–21487, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Neuendorf, A. Weber, A. Saalmueller et al., “Glycosylation deficiency at either one of the two glycan attachment sites of cellular prion protein preserves susceptibility to bovine spongiform encephalopathy and scrapie infections,” The Journal of Biological Chemistry, vol. 279, no. 51, pp. 53306–53316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Li, A. Lau, T. J. Morris, L. Guo, C. B. Fordyce, and E. F. Stanley, “A syntaxin 1, Gαo, and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization,” The Journal of Neuroscience, vol. 24, no. 16, pp. 4070–4081, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Mastrianni, “Fatal sporadic insomnia: fatal familial insomnia phenotype without a mutation of the prion protein gene,” Neurology, vol. 48, supplement, p. A296, 1997. View at Google Scholar
  23. S. Kiachopoulos, A. Bracher, K. F. Winklhofer, and J. Tatzelt, “Pathogenic mutations located in the hydrophobic core of the prion protein interfere with folding and attachment of the glycosylphosphatidylinositol anchor,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 9320–9329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Rogers, A. Tarabolous, M. Scott, D. Groth, and S. B. Prusiner, “Intracellular accumulation of the cellular prion protein after mutagenesis of its Asn-linked glycosylation sites,” Glycobiology, vol. 1, no. 1, pp. 101–109, 1990. View at Google Scholar · View at Scopus
  25. S. Barmada, P. Piccardo, K. Yamaguchi, B. Ghetti, and D. A. Harris, “GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice,” Neurobiology of Disease, vol. 16, no. 3, pp. 527–537, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Lobel, K. Fujimoto, R. D. Ye, G. Griffiths, and S. Kornfeld, “Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis,” Cell, vol. 57, no. 5, pp. 787–796, 1989. View at Google Scholar · View at Scopus
  27. L. Ivanova, S. Barmada, T. Kummer, and D. A. Harris, “Mutant prion proteins are partially retained in the endoplasmic reticulum,” The Journal of Biological Chemistry, vol. 276, no. 45, pp. 42409–42421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. W. A. Dunn Jr., “Studies on the mechanisms of autophagy: formation of the autophagic vacuole,” Journal of Cell Biology, vol. 110, no. 6, pp. 1923–1933, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009. View at Google Scholar · View at Scopus
  30. N. Mizushima, “Methods for monitoring autophagy,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 12, pp. 2491–2502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. D. J. Klionsky, “Guidelines for the use and interpretation of assays for monitoring autophagy,” Autophagy, vol. 8, no. 4, pp. 445–544, 2012. View at Google Scholar
  32. A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, and Y. Tashiro, “Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells,” Cell Structure and Function, vol. 23, no. 1, pp. 33–42, 1998. View at Google Scholar · View at Scopus
  33. D. J. Klionsky, Z. Elazar, P. O. Seglen, and D. C. Rubinsztein, “Does bafilomycin A1 block the fusion of autophagosomes with lysosomes?” Autophagy, vol. 4, no. 7, pp. 849–850, 2008. View at Google Scholar · View at Scopus
  34. K. Tanji, F. Mori, A. Kakita, H. Takahashi, and K. Wakabayashi, “Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease,” Neurobiology of Disease, vol. 43, no. 3, pp. 690–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Hariri, G. Millane, M.-P. Guimond, G. Guay, J. W. Dennis, and I. R. Nabi, “Biogenesis of multilamellar bodies via autophagy,” Molecular Biology of the Cell, vol. 11, no. 1, pp. 255–268, 2000. View at Google Scholar · View at Scopus
  36. S. Shimizu, T. Kanaseki, N. Mizushima et al., “Role of Bcl-2 family proteins in a non-apoptopic programmed cell death dependent on autophagy genes,” Nature Cell Biology, vol. 6, no. 12, pp. 1221–1228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. N. S. Cutler, J. Heitman, and M. E. Cardenas, “TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals,” Molecular and Cellular Endocrinology, vol. 155, no. 1-2, pp. 135–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Mizushima, A. Yamamoto, M. Hatano et al., “Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells,” Journal of Cell Biology, vol. 152, no. 4, pp. 657–668, 2001. View at Google Scholar · View at Scopus
  39. Y. Nishida, S. Arakawa, K. Fujitani et al., “Discovery of Atg5/Atg7-independent alternative macroautophagy,” Nature, vol. 461, no. 7264, pp. 654–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. Nixon, “Autophagy, amyloidogenesis and Alzheimer disease,” Journal of Cell Science, vol. 120, part 23, pp. 4081–4091, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kamimoto, S. Shoji, T. Hidvegi et al., “Intracellular inclusions containing mutant α1-antitrypsin Z are propagated in the absence of autophagic activity,” The Journal of Biological Chemistry, vol. 281, no. 7, pp. 4467–4476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Teckman and D. H. Perlmutter, “Retention of mutant α1-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response,” American Journal of Physiology, vol. 279, no. 5, pp. G961–G974, 2000. View at Google Scholar · View at Scopus
  43. R. Castino, J. Davies, S. Beaucourt, C. Isidoro, and D. Murphy, “Autophagy is a prosurvival mechanism in cells expressing an autosomal dominant familial neurohypophyseal diabetes insipidus mutant vasopressin transgene,” The FASEB Journal, vol. 19, no. 8, pp. 1021–1023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Fujita, Y. Kouroku, A. Isoai et al., “Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II),” Human Molecular Genetics, vol. 16, no. 6, pp. 618–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Ashok and R. S. Hegde, “Selective processing and metabolism of disease-causing mutant prion proteins,” PLoS Pathogens, vol. 5, no. 6, Article ID e1000479, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Oh, H. Y. Shin, S.-J. Park et al., “The involvement of cellular prion protein in the autophagy pathway in neuronal cells,” Molecular and Cellular Neuroscience, vol. 39, no. 2, pp. 238–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Hetz, M. Russelakis-Carneiro, K. Maundrell, J. Castilla, and C. Soto, “Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein,” The EMBO Journal, vol. 22, no. 20, pp. 5435–5445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Hetz, J. Castilla, and C. Soto, “Perturbation of endoplasmic reticulum homeostasis facilitates prion replication,” The Journal of Biological Chemistry, vol. 282, no. 17, pp. 12725–12733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Moreno, “Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration,” Nature, vol. 485, no. 7399, pp. 507–511, 2012. View at Google Scholar
  50. G. Velasco, T. Verfaillie, M. Salazar, and P. Agostinis, “Linking ER stress to autophagy: potential implications for cancer therapy,” International Journal of Cell Biology, vol. 2010, Article ID 930509, 19 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Ogata, S.-I. Hino, A. Saito et al., “Autophagy is activated for cell survival after endoplasmic reticulum stress,” Molecular and Cellular Biology, vol. 26, no. 24, pp. 9220–9231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Bernales, K. L. McDonald, and P. Walter, “Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response,” PLoS Biology, vol. 4, no. 12, p. e423, 2006. View at Google Scholar · View at Scopus
  53. A. Ertmer, S. Gilch, S.-W. Yun et al., “The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells,” The Journal of Biological Chemistry, vol. 279, no. 40, pp. 41918–41927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. W. Yun, A. Ertmer, E. Flechsig et al., “The tyrosine kinase inhibitor imatinib mesylate delays prion neuroinvasion by inhibiting prion propagation in the periphery,” Journal of NeuroVirology, vol. 13, no. 4, pp. 328–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002. View at Google Scholar · View at Scopus
  56. B. Ravikumar, C. Vacher, Z. Berger et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nature Genetics, vol. 36, no. 6, pp. 585–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Martinez-Vicente, Z. Talloczy, E. Wong et al., “Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease,” Nature Neuroscience, vol. 13, no. 5, pp. 567–576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. H. Lee, W. H. Yu, A. Kumar et al., “Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations,” Cell, vol. 141, no. 7, pp. 1146–1158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Fevrier, D. Vilette, F. Archer et al., “Cells release prions in association with exosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9683–9688, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. L. J. Vella, R. A. Sharples, V. A. Lawson, C. L. Masters, R. Cappai, and A. F. Hill, “Packaging of prions into exosomes is associated with a novel pathway of PrP processing,” Journal of Pathology, vol. 211, no. 5, pp. 582–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Rodríguez, P. Webster, J. Ortego, and N. W. Andrews, “Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells,” Journal of Cell Biology, vol. 137, no. 1, pp. 93–104, 1997. View at Publisher · View at Google Scholar · View at Scopus