Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2011 (2011), Article ID 460381, 29 pages
http://dx.doi.org/10.1155/2011/460381
Review Article

A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection

1Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
2Department of Pest Control and Environmental Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt

Received 22 January 2011; Revised 8 March 2011; Accepted 22 March 2011

Academic Editor: Bruno Sarmento

Copyright © 2011 Mohamed E. I. Badawy and Entsar I. Rabea. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Casida and G. B. Quistad, “Golden age of insecticide research: past, present, or future?” Annual Review of Entomology, vol. 43, pp. 1–16, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. L. Carson, Silent Spring, Riverside Press, Cambridge, Mass, USA, 1962.
  3. P. Houeto, G. Bindoula, and J. R. Hoffman, “Ethylenebisdithiocarbamates and ethylenethiourea: possible human health hazards,” Environmental Health Perspectives, vol. 103, no. 6, pp. 568–573, 1995. View at Google Scholar · View at Scopus
  4. S. Ben-Yeohshua and J. Mercier, “UV irradiation, biological agents, and natural compounds for controlling postharvest decay in fresh fruits and vegetables,” in Environmentally Friendly Technologies for Agricultural Produce Quality, S. S. Ben-Yehoshua, Ed., pp. 266–299, Taylor & Francis, Boca Raton, Fla, USA, 2005. View at Google Scholar
  5. A. El Ghaouth and C. L. Wilson, “Biologically-based technologies for the control of postharvest diseases,” Postharvest News and Information, vol. 6, pp. 5N–11N, 1995. View at Google Scholar
  6. E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. A. A. Muzzarelli, “Chitin and its derivatives: new trends of applied research,” Carbohydrate Polymers, vol. 3, no. 1, pp. 53–75, 1983. View at Google Scholar · View at Scopus
  8. R. C. Goy, D. De Britto, and O. B. G. Assis, “A review of the antimicrobial activity of chitosan,” Polimeros, vol. 19, no. 3, pp. 241–247, 2009. View at Google Scholar · View at Scopus
  9. H. K. No and S. P. Meyers, “Preparation of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 475–489, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  10. A. El Hadrami, L. R. Adam, I. El Hadrami, and F. Daayf, “Chitosan in plant protection,” Marine Drugs, vol. 8, no. 4, pp. 968–987, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. H. Braconnot, “Sur la nature des champignons,” Annual Chemistry, vol. 79, pp. 265–304, 1811. View at Google Scholar
  12. P. Labrude and C. Becq, “Pharmacist and chemist Henri BraconnotLe pharmacien et chimiste Henri Braconnot,” Revue d"Histoire de la Pharmacie, vol. 51, no. 337, pp. 61–78, 2003. View at Google Scholar · View at Scopus
  13. F. Hoppe-Seiler, “Ueber chitosan und zellulose,” Berichte der Deutschen Chemischen Gesellschaft, vol. 27, pp. 3329–3331, 1894. View at Google Scholar
  14. P. Beaney, J. Lizardi-Mendoza, and M. Healy, “Comparison of chitins produced by chemical and bioprocessing methods,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 2, pp. 145–150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” Reactive and Functional Polymers, vol. 46, no. 1, pp. 1–27, 2000. View at Google Scholar · View at Scopus
  16. K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Marine Biotechnology, vol. 8, no. 3, pp. 203–226, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. G. McKay, H. S. Blair, and J. R. Gardner, “The adsorption of dyes onto chitin in fixed bed column and batch adsorbers,” Journal of Applied Polymer Science, vol. 29, no. 5, pp. 1499–1514, 1984. View at Publisher · View at Google Scholar · View at Scopus
  18. K. M. Vårum, M. W. Anthonsen, H. Grasdalen, and O. Smidsrod, “Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field N.M.R. spectroscopy,” Carbohydrate Research, vol. 211, no. 1, pp. 17–23, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. H. K. No and S. P. Meyers, “Preparation of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 475–489, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  20. S. Hirano, “Chitin biotechnology applications,” Biotechnology Annual Review, vol. 2, pp. 237–258, 1996. View at Google Scholar · View at Scopus
  21. Y. Shigemasa and S. Minami, “Applications of chitin and chitosan for biomaterials,” Biotechnology and Genetic Engineering Reviews, vol. 13, pp. 413–420, 1996. View at Google Scholar · View at Scopus
  22. F. Shahidi, J. K. V. Arachchi, and Y. J. Jeon, “Food applications of chitin and chitosans,” Trends in Food Science and Technology, vol. 10, no. 2, pp. 37–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. A. Muzzarelli, “Filmogenic properties of chitin/chitosan,” in Chitin in Nature and Technology, R. C. Muzzarelli and G. W. Jeuniaux, Eds., pp. 389–396, Plenum Press, New York, NY, USA, 1986. View at Google Scholar
  24. P. A. Sandford, “Commercial sources of chitin and chitosan and their utilization,” in Advances in Chitin Sciences, K. M. Vårum, A. Domard, and O. Smidsrød, Eds., vol. 6, p. 35, NTNU Trondheim, Trondheim, Norway, 2003. View at Google Scholar
  25. C. Jeuniaux and M. F. Voss-Foucart, “Chitin biomass and production in the marine environment,” Biochemical Systematics and Ecology, vol. 19, no. 5, pp. 347–356, 1991. View at Google Scholar · View at Scopus
  26. G. A. F. Roberts, Chitin Chemistry, Macmillan, Indianapolis, Ind, USA, 1992.
  27. J. Synowiecki and N. A. A. Q. Al-Khateeb, “Mycelia of Mucor rouxii as a source of chitin and chitosan,” Food Chemistry, vol. 60, no. 4, pp. 605–610, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. P. A. Sandford, “Chitosan—commercial uses and potential applications,” in Chitin and Chitosan, G. S. Brack, T. Anthonsen, and P. Sandford, Eds., pp. 51–69, Elsevier, New York, NY, USA, 1989. View at Google Scholar
  29. D. Horton and D. R. Lineback, “N-deacetylation, chitosan from chitin,” in Methods in Carbohydrate Chemistry, R. L. Whistler and M. L. Wolfson, Eds., p. 403, Academic Press, New York, NY, USA, 1965. View at Google Scholar
  30. W. A. Bough, W. L. Salter, A. C. M. Wu, and B. E. Perkins, “Influence of manufacturing variables on the characteristics and effectiveness of chitosan products. I. Chemical composition, viscosity, and molecular-weight distribution of chitosan products,” Biotechnology and Bioengineering, vol. 20, no. 12, pp. 1931–1943, 1978. View at Google Scholar · View at Scopus
  31. H. K. No, K. S. Lee, and S. P. Meyers, “Correlation between physicochemical characteristics and binding capacities of chitosan products,” Journal of Food Science, vol. 65, no. 7, pp. 1134–1137, 2000. View at Google Scholar
  32. P. L. Dung, M. Milas, M. Rinaudo, and J. Desbrières, “Water soluble derivatives obtained by controlled chemical modifications of chitosan,” Carbohydrate Polymers, vol. 24, no. 3, pp. 209–214, 1994. View at Google Scholar · View at Scopus
  33. V. Sousa Andrade, B. De Barros Neto, K. Fukushima, and G. M. De Campos-Takaki, “Effect of medium components and time of cultivation on chitin production by Mucor circinelloides (Mucor javanicus IFO 4570)—a factorial study,” Revista Iberoamericana de Micologia, vol. 20, no. 4, pp. 149–153, 2003. View at Google Scholar · View at Scopus
  34. T. Chandy and C. P. Sharma, “Chitosan—as a biomaterial,” Biomaterials, Artificial Cells, and Artificial Organs, vol. 18, no. 1, pp. 1–24, 1990. View at Google Scholar · View at Scopus
  35. E. P. Feofilova, D. V. Nemtsev, V. M. Tereshina, and V. P. Kozlov, “Polyaminosaccharides of mycelial fungi: new biotechnological use and practical implications (review),” Applied Biochemistry and Microbiology, vol. 32, no. 5, pp. 437–445, 1996. View at Google Scholar · View at Scopus
  36. KE. J. Hu, J. L. Hu, K. P. Ho, and K. W. Yeung, “Screening of fungi for chitosan producers, and copper adsorption capacity of fungal chitosan and chitosanaceous materials,” Carbohydrate Polymers, vol. 58, no. 1, pp. 45–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Rinaudo, P. Le Dung, C. Gey, and M. Milas, “Substituent distribution on O,N-carboxymethylchitosans by H1 and C13 N.M.R,” International Journal of Biological Macromolecules, vol. 14, no. 3, pp. 122–128, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. S. V. Nemtsev, O. Y. Zueva, M. R. Khismatullin, A. I. Albulov, and V. P. Varlamov, “Isolation of chitin and chitosan from honeybees,” Applied Biochemistry and Microbiology, vol. 40, no. 1, pp. 39–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Pochanavanich and W. Suntornsuk, “Fungal chitosan production and its characterization,” Letters in Applied Microbiology, vol. 35, no. 1, pp. 17–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Synowiecki and N. A. Al-Khateeb, “Production, properties, and some new applications of chitin and its derivatives,” Critical Reviews in Food Science and Nutrition, vol. 43, no. 2, pp. 145–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. S. C. Tan, T. K. Tan, S. M. Wong, and E. Khor, “The chitosan yield of zygomycetes at their optimum harvesting time,” Carbohydrate Polymers, vol. 30, no. 4, pp. 239–242, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. W. L. Teng, E. Khor, T. K. Tan, L. Y. Lim, and S. C. Tan, “Concurrent production of chitin from shrimp shells and fungi,” Carbohydrate Research, vol. 332, no. 3, pp. 305–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. V. S. Andrade, B. B. Neto, W. Souza, and G. M. Campos-Takaki, “A factorial design analysis of chitin production by Cunninghamella elegans,” Canadian Journal of Microbiology, vol. 46, no. 11, pp. 1042–1045, 2000. View at Google Scholar · View at Scopus
  44. G. M. Campos-Takaki, “The fungal versatility on the copolymers chitin and chitosan production,” in Chitin and Chitosan Opportunities and Challenges, P. K. Dutta, Ed., pp. 69–94, SSM: International Publication, Midnapore, India, 2005. View at Google Scholar
  45. R. V. S. Amorim, W. M. Ledingham, K. Fukushima, and G. M. Campos-Takaki, “Screening of chitin deacetylase from Mucoralean strains (Zygomycetes) and its relationship to cell growth rate,” Journal of Industrial Microbiology and Biotechnology, vol. 32, no. 1, pp. 19–23, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. S. Benjakul and P. Sophanodora, “Chitosan production from carapace and shell of black tiger shrimp,” ASEAN Food Journal, vol. 8, pp. 145–148, 1993. View at Google Scholar
  47. K. Nadarajah, J. Kader, M. Mazmira, and D. C. Paul, “Production of chitosan by fungi,” Pakistan Journal of Biological Science, vol. 4, pp. 263–265, 2001. View at Google Scholar
  48. T. C. M. Stamford, T. L. M. Stamford, N. P. Stamford, B. D. B. Neto, and G. M. De Campos-Takaki, “Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean medium,” Electronic Journal of Biotechnology, vol. 10, no. 1, pp. 61–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Di Mario, P. Rapanà, U. Tomati, and E. Galli, “Chitin and chitosan from Basidiomycetes,” International Journal of Biological Macromolecules, vol. 43, no. 1, pp. 8–12, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. Crestini, B. Kovac, and G. Giovannozzi-Sermanni, “Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes,” Biotechnology and Bioengineering, vol. 50, no. 2, pp. 207–210, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. U. Carlberg, “Chitin contents of different development stages of stick insects (Phasmida),” Zoologische Jahrbuecher, Abteilung fuer Allgemeine Zoologie und Physiologie der Tiere, vol. 86, p. 413, 1982. View at Google Scholar
  52. A. T. Paulino, J. I. Simionato, J. C. Garcia, and J. Nozaki, “Characterization of chitosan and chitin produced from silkworm crysalides,” Carbohydrate Polymers, vol. 64, no. 1, pp. 98–103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. O. E. Tauber, “The distribution of chitin in an insect,” Journal of Morphology, vol. 56, pp. 51–58, 2005. View at Google Scholar
  54. P. Veronico, L. J. Gray, J. T. Jones et al., “Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia,” Molecular Genetics and Genomics, vol. 266, no. 1, pp. 28–34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Haga, “Preparation of chitin from thin-shelled cocoons with pupa obtained as waste from the silk reeling process,” in Proceedings of the 2nd Asia Pacific Chitin and Chitosan Symposium, Bangkok, Thailand, 1996.
  56. K. Ogawa and T. Yui, “Structure and function of chitosan. 3. Crystallinity of partially N-acetylated chitosans,” Bioscience, Biotechnology and Biochemistry, vol. 57, pp. 1466–1469, 1993. View at Google Scholar
  57. K. V. Harish Prashanth, F. S. Kittur, and R. N. Tharanathan, “Solid state structure of chitosan prepared under different N-deacetylating conditions,” Carbohydrate Polymers, vol. 50, no. 1, pp. 27–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Jaworska, K. Sakurai, P. Gaudon, and E. Guibal, “Influence of chitosan characteristics on polymer properties. I: crystallographic properties,” Polymer International, vol. 52, no. 2, pp. 198–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. D. K. Rout, S. K. Pulapura, and R. A. Gross, “Liquid crystalline characteristics of site-selectively-modified chitosan,” Macromolecules, vol. 26, no. 22, pp. 5999–6006, 1993. View at Google Scholar · View at Scopus
  60. A. Baxter, M. Dillon, K. D. A. Taylor, and G. A. F. Roberts, “Improved method for a determination of the degree of N-acetylation of chitosan,” International Journal of Biological Macromolecules, vol. 14, no. 3, pp. 166–169, 1992. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Domard, “pH and CD measurements on a fully deacetylated chitosan: application to Cu(II)-polymer interactions,” International Journal of Biological Macromolecules, vol. 9, no. 2, pp. 98–104, 1987. View at Google Scholar · View at Scopus
  62. M. L. Duarte, M. C. Ferreira, M. R. Marvão, and J. Rocha, “An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy,” International Journal of Biological Macromolecules, vol. 31, no. 1–3, pp. 1–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. T. D. Rathke and S. M. Hodson, “Review of chitin and chitosan as fibre and film formers,” Journal of Molecular Science. Reviews in Macromolecular Chemistry, vol. C34, p. 375, 1994. View at Google Scholar
  64. L. Raymond, F. G. Morin, and R. H. Marchessault, “Degree of deacetylation of chitosan using conductometric titration and solid-state NMR,” Carbohydrate Research, vol. 246, pp. 331–336, 1993. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Sashiwa, H. Saimoto, Y. Shigemasa, and S. Tokura, “N-acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions,” Carbohydrate Research, vol. 242, pp. 167–172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Ebert and H. P. Fink, “Solid state NMR spectroscopy of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., p. 137, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  67. Y. Inoue, “NMR determination of the degree of acetylation,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 133–136, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  68. R. A. A. Muzzarelli, R. Rocchetti, V. Stanic, and M. Weckx, “Methods for the determination of the degree of acetylation of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 109–119, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  69. G. A. F. Roberts, “Determination of the degree of N-acetylation of chitin and chitosan,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 127–132, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  70. M. E. I. Badawy, “Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens,” Journal of Applied Polymer Science, vol. 117, no. 2, pp. 960–969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. E. I. Badawy, E. I. Rabea, T. M. Rogge et al., “Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives,” Biomacromolecules, vol. 5, no. 2, pp. 589–595, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. M. R. Kasaai, “Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review,” Carbohydrate Polymers, vol. 79, no. 4, pp. 801–810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Lebouc, I. Dez, and P. J. Madec, “NMR study of the phosphonomethylation reaction on chitosan,” Polymer, vol. 46, no. 2, pp. 319–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Hirai, H. Odani, and A. Nakajima, “Determination of degree of deacetylation of chitosan by H1 NMR spectroscopy,” Polymer Bulletin, vol. 26, no. 1, pp. 87–94, 1991. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Sashiwa and Y. Shigemasa, “Chemical modification of chitin and chitosan. 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins,” Carbohydrate Polymers, vol. 39, no. 2, pp. 127–138, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. M. El Badawy, “Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives,” Polymer International, vol. 57, no. 2, pp. 254–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. E. I. Badawy, E. I. Rabea, T. M. Rogge et al., “Fungicidal and insecticidal activity of O-acyl chitosan derivatives,” Polymer Bulletin, vol. 54, no. 4-5, pp. 279–289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. E. I. Rabea, M. E. I. Badawy, W. Steurbaut, and C. V. Stevens, “In vitro assessment of N-(benzyl)chitosan derivatives against some plant pathogenic bacteria and fungi,” European Polymer Journal, vol. 45, no. 1, pp. 237–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Sashiwa, N. Kawasaki, A. Nakayama et al., “Chemical modification of chitosan. 13. Synthesis of organosoluble, palladium adsorbable, and biodegradable chitosan derivatives toward the chemical plating on plastics,” Biomacromolecules, vol. 3, no. 5, pp. 1120–1125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Kuhn and H. Kuhn, “Die Frage nach der Aufrollung von Fadenmolekülen in strömenden Lösungen,” Helvetica Chimica Acta, vol. 26, pp. 1394–1465, 1943. View at Google Scholar
  81. H. Mark, Der feste Körper, Hirzel, Leipzig, Germany, 1938.
  82. W. Wang, S. Bo, S. Li, and W. Qin, “Determination of the Mark-Houwink equation for chitosans with different degrees of deacetylation,” International Journal of Biological Macromolecules, vol. 13, no. 5, pp. 281–285, 1991. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Berth and H. Dautzenberg, “The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution,” Carbohydrate Polymers, vol. 47, no. 1, pp. 39–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. M. W. Anthonsen, K. M. Vårum, and O. Smidsrød, “Solution properties of chitosans: conformation and chain stiffness of chitosans with different degrees of N-acetylation,” Carbohydrate Polymers, vol. 22, no. 3, pp. 193–201, 1993. View at Google Scholar · View at Scopus
  85. M. Rinaudo, “Properties and degradation of selected polysaccharides: hyaluronan and chitosan,” Corrosion Engineering Science and Technology, vol. 42, no. 4, pp. 324–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Brugnerotto, J. Desbrières, G. Roberts, and M. Rinaudo, “Characterization of chitosan by steric exclusion chromatography,” Polymer, vol. 42, no. 25, pp. 9921–9927, 2001. View at Google Scholar · View at Scopus
  87. M. Bohdanecky and J. Kovar, Viscosity of Polymer Solutions, Elsevier, Amsterdam, The Netherlands, 1982.
  88. W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern Size Exclusion Liquid Chromatography, John Wiley and Sons, New York, NY, USA, 1979.
  89. G. G. Allan and M. Peyron, “Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid,” Carbohydrate Research, vol. 277, no. 2, pp. 257–272, 1995. View at Publisher · View at Google Scholar · View at Scopus
  90. G. G. Allan and M. Peyron, “Molecular weight manipulation of chitosan II: prediction and control of extent of depolymerization by nitrous acid,” Carbohydrate Research, vol. 277, no. 2, pp. 273–282, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Rinaudo and A. Domard, “Solution properties of chitosan,” in Chitin and Chitosan, G. Skjåk-Bræk, T. Anthonsen, and P. Sandford, Eds., pp. 71–86, Elsevier, London, UK, 1989. View at Google Scholar
  92. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, USA, 1953.
  93. C. Tanford, Physical Chemistry of Macromolecules, John Wiley Press, New York, NY, USA, 1961.
  94. M. Terbojevich and A. Cosani, “Molecular weight determination of chitin and chitosan,” in Chitin Handbook Atec, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 87–101, Grottammare, Italy, 1997. View at Google Scholar
  95. M. Huglin, Light Scattering from Polymer Solutions, Academic Press, New York, NY, USA, 1972.
  96. R. A. A. Muzzarelli, C. Lough, and M. Emanuelli, “The molecular weight of chitosans studied by laser light-scattering,” Carbohydrate Research, vol. 164, pp. 433–442, 1987. View at Google Scholar · View at Scopus
  97. C. Schatz, C. Pichot, T. Delair, C. Viton, and A. Domard, “Static light scattering studies on chitosan solutions: from macromolecular chains to colloidal dispersions,” Langmuir, vol. 19, no. 23, pp. 9896–9903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Hugerth, N. Caram-Lelham, and L. O. Sundelöf, “The effect of charge density and conformation on the polyelectrolyte complex formation between carrageenan and chitosan,” Carbohydrate Polymers, vol. 34, no. 3, pp. 149–156, 1997. View at Google Scholar · View at Scopus
  99. T. Sannan, K. Kurita, and Y. Iwakura, “Studies on chitin, 2. Effect of deacetylation on solubility,” Die Makromolekulare Chemie, vol. 177, pp. 3589–3600, 1976. View at Google Scholar
  100. M. Rinaudo, G. Pavlov, and J. Desbrières, “Influence of acetic acid concentration on the solubilization of chitosan,” Polymer, vol. 40, no. 25, pp. 7029–7032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Gross, E. Konrad, and H. Mager, “Investigations on chitosan as a natural film forming ingredient in hair cosmetic products under the consideration of ecological aspects,” Parfuem Kosmet, vol. 64, p. 367, 1983. View at Google Scholar
  102. P. Sorlier, A. Denuzière, C. Viton, and A. Domard, “Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan,” Biomacromolecules, vol. 2, no. 3, pp. 765–772, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. S. P. Strand, T. Tømmeraas, K. M. Vårum, and K. Østgaard, “Electrophoretic light scattering studies of chitosans with different degrees of N-acetylation,” Biomacromolecules, vol. 2, no. 4, pp. 1310–1314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  104. S. M. Hudson and D. W. Jenkins, Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, Wiley Interscience, New York, NY, USA, 3rd edition, 2001.
  105. S. Fujii, H. Kumagai, and M. Noda, “Preparation of poly(acyl)chitosans,” Carbohydrate Research, vol. 83, pp. 389–393, 1980. View at Google Scholar
  106. K. Kurita, M. Kobayashi, T. Munakata, S. Ishii, and S. I. Nishimura, “Synthesis of non-natural branched polysaccharides. Regioselective introduction of α-mannoside branches into chitin,” Chemistry Letters, vol. 23, p. 2063, 1994. View at Google Scholar
  107. J. Holappa, T. Nevalainen, J. Savolainen et al., “Synthesis and characterization of chitosan N-betainates having various degrees of substitution,” Macromolecules, vol. 37, no. 8, pp. 2784–2789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. S. I. Nishimura, O. Kohgo, K. Kurita, and H. Kuzuhara, “Chemospecific manipulations of a rigid polysaccharide: syntheses of novel chitosan derivatives with excellent solubility in common organic solvents by regioselective chemical modifications,” Macromolecules, vol. 24, no. 17, pp. 4745–4748, 1991. View at Google Scholar · View at Scopus
  109. Z. Jia, D. Shen, and W. Xu, “Synthesis and antibacterial activities of quaternary ammonium salt of chitosan,” Carbohydrate Research, vol. 333, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. C. H. Kim and K. S. Choi, “Synthesis and antibacterial activity of quaternized chitosan derivatives having different methylene spacers,” Journal of Industrial and Engineering Chemistry, vol. 8, no. 1, pp. 71–76, 2002. View at Google Scholar · View at Scopus
  111. M. Rinaudo, “Chitin and chitosan: properties and applications,” Progress in Polymer Science, vol. 31, no. 7, pp. 603–632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. W. Jiang and S. Han, “Sensibility of the chitosan to the addition of salt by viscometry,” Acta Polymerica Sinica, no. 5, pp. 571–572, 1998. View at Google Scholar · View at Scopus
  113. D. G. Rao, “Studies on viscosity-molecular weight relationship of chitosan solutions,” Journal of Food Science and Technology, vol. 30, pp. 66–67, 1993. View at Google Scholar
  114. S. I. Aiba, “Studies on chitosan: 2. Solution stability and reactivity of partially N-acetylated chitosan derivatives in aqueous media,” International Journal of Biological Macromolecules, vol. 11, no. 4, pp. 249–252, 1989. View at Google Scholar · View at Scopus
  115. S. Hirano and T. Moriyasu, “N-(carboxyacyl)chitosans,” Carbohydrate Research, vol. 92, no. 2, pp. 323–327, 1981. View at Google Scholar · View at Scopus
  116. S. Hirano and T. Moriyasu, “Some novel N-(carboxyacyl)chitosan filaments,” Carbohydrate Polymers, vol. 55, no. 3, pp. 245–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Hirano, Y. Yamaguchi, and M. Kamiya, “Water-soluble N-(n-fatty acyl)chitosans,” Macromolecular Bioscience, vol. 3, no. 10, pp. 629–631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. R. A. A. Muzzarelli, Chitin, in the Polysaccharides, Vol. 3, G. O. Aspinall, Ed., Academic Press, New York, NY, USA, 1985.
  119. E. I. Rabea, M. E. I. Badawy, T. M. Rogge et al., “Insecticidal and fungicidal activity of new synthesized chitosan derivatives,” Pest Management Science, vol. 61, no. 10, pp. 951–960, 2005. View at Publisher · View at Google Scholar · View at PubMed
  120. E. I. Rabea, M. E. I. Badawy, T. M. Rogge et al., “Enhancement of fungicidal and insecticidal activity by reductive alkylation of chitosan,” Pest Management Science, vol. 62, no. 9, pp. 890–897, 2006. View at Publisher · View at Google Scholar · View at PubMed
  121. T. P. Labuza and W. M. Breene, “Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods,” Journal of Food Processing and Preservation, vol. 13, p. 1, 1989. View at Google Scholar
  122. S. Roller, “The antimicrobial action of chitosan: laboratory curiosity or novel food preservative?” in Advances in Chitin Sciences, K. M. Vårum, A. Domard, and O. Smidsrød, Eds., vol. 6, p. 43, NTNU Trondheim, Trondheim, Norway, 2003. View at Google Scholar
  123. J. Hosokawa, M. Nishiyama, K. Yoshihara, T. Kubo, and A. Terabe, “Reaction between chitosan and cellulose on biodegradable composite film formation,” Industrial & Engineering Chemistry Research, vol. 30, no. 4, pp. 788–792, 1991. View at Google Scholar
  124. T. Uragami, “Preparation and characteristics of chitosan membranes,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., p. 451, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  125. P. D. Hoagland and N. Parris, “Chitosan/pectin laminated films,” Journal of Agricultural and Food Chemistry, vol. 44, no. 7, pp. 1915–1919, 1996. View at Google Scholar · View at Scopus
  126. J. Hosokawa, M. Nishiyama, K. Yoshihara, and T. Kubo, “Biodegradable film derived from chitosan and homogenized cellulose,” Industrials and Engineering Chemistry Research, vol. 29, no. 5, pp. 800–805, 1990. View at Google Scholar · View at Scopus
  127. D. W. S. Wong, F. A. Gastineau, K. S. Gregorski, S. J. Tillin, and A. E. Pavlath, “Chitosan-lipid films: microstructure and surface energy,” Journal of Agricultural and Food Chemistry, vol. 40, no. 4, pp. 540–544, 1992. View at Google Scholar · View at Scopus
  128. Q. Wu and L. Zhang, “Structure and properties of casting films blended with starch and waterborne polyurethane,” Journal of Applied Polymer Science, vol. 79, no. 11, pp. 2006–2013, 2001. View at Google Scholar · View at Scopus
  129. Y. X. Xu, K. M. Kim, M. A. Hanna, and D. Nag, “Chitosan-starch composite film: preparation and characterization,” Industrial Crops and Products, vol. 21, no. 2, pp. 185–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. E. R. Hayes and D. H. Davies, “Characterization of chitosan. I. Thermoreversible chitosan gels,” in Proceedings of the 1st International Conference on Chitin and Chitosan, p. 193, 1978.
  131. S. Hirano, S. Kondo, and Y. Ohe, “Chitosan gel: a novel polysaccharide gel,” Polymer, vol. 16, no. 8, p. 622, 1975. View at Google Scholar · View at Scopus
  132. S. Hirano, R. Yamaguchi, N. Fukui, and M. Iwata, “A chitosan oxalate gel: its conversion to an N-acetylchitosan gel via a chitosan gel,” Carbohydrate Research, vol. 201, no. 1, pp. 145–149, 1990. View at Google Scholar · View at Scopus
  133. T. Gotoh, K. Matsushima, and K. I. Kikuchi, “Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions,” Chemosphere, vol. 55, no. 1, pp. 135–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. K. I. Draget, K. M. Vårum, E. Moen, H. Gynnild, and O. Smidsrod, “Chitosan cross-linked with Mo(VI) polyoxyanions: a new gelling system,” Biomaterials, vol. 13, no. 9, pp. 635–638, 1992. View at Publisher · View at Google Scholar · View at Scopus
  135. K. I. Draget, “Associating phenomena in highly acetylated chitosan gels,” Polymer Gels and Networks, vol. 4, no. 2, pp. 143–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  136. G. A. F. Roberts and K. E. Taylor, “Chitosan gels. 3. The formation of gels by reaction of chitosan with glutaraldehyde,” Die Makromolekulare Chemie, vol. 190, p. 951, 1989. View at Google Scholar
  137. T. Chen, R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne, “Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates,” Biomacromolecules, vol. 2, no. 2, pp. 456–462, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. B. Krajewska, “Application of chitin- and chitosan-based materials for enzyme immobilizations: a review,” Enzyme and Microbial Technology, vol. 35, no. 2-3, pp. 126–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. G. Kumar, J. F. Bristow, P. J. Smith, and G. F. Payne, “Enzymatic gelation of the natural polymer chitosan,” Polymer, vol. 41, no. 6, pp. 2157–2168, 2000. View at Publisher · View at Google Scholar · View at Scopus
  140. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, “Metal complexation by chitosan and its derivatives: a review,” Carbohydrate Polymers, vol. 55, no. 1, pp. 77–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  141. S. S. Koide, “Chitin-chitosan: properties, benefits and risks,” Nutrition Research, vol. 18, no. 6, pp. 1091–1101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  142. D. J. Ormrod, C. C. Holmes, and T. E. Miller, “Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis,” Atherosclerosis, vol. 138, no. 2, pp. 329–334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  143. M. Rhazi, J. Desbrières, A. Tolaimate, M. Rinaudo, P. Vottero, and A. Alagui, “Contribution to the study of the complexation of copper by chitosan and oligomers,” Polymer, vol. 43, no. 4, pp. 1267–1276, 2002. View at Google Scholar
  144. I. M. N. Vold, K. M. Vårum, E. Guibal, and O. Smidsrød, “Binding of ions to chitosan—selectivity studies,” Carbohydrate Polymers, vol. 54, no. 4, pp. 471–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  145. M. E. I. Badawy, “Preparation and antimicrobial activity of some chitosan-metal complexes against some plant pathogenic bacteria and fungi,” Journal of Pest Control and Environmental Sciences, vol. 18, pp. 37–50, 2010. View at Google Scholar
  146. A. Higazy, M. Hashem, A. ElShafei, N. Shaker, and M. A. Hady, “Development of antimicrobial jute packaging using chitosan and chitosan-metal complex,” Carbohydrate Polymers, vol. 79, no. 4, pp. 867–874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Mekahlia and B. Bouzid, “Chitosan-Copper (II) complex as antibacterial agent: synthesis, characterization and coordinating bond-activity correlation study,” Physics Procedia, vol. 2, no. 3, pp. 1045–1053, 2009. View at Publisher · View at Google Scholar
  148. X. Wang, Y. Du, and H. Liu, “Preparation, characterization and antimicrobial activity of chitosan-Zn complex,” Carbohydrate Polymers, vol. 56, no. 1, pp. 21–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. X. Wang, Y. Du, L. Fan, H. Liu, and Y. Hu, “Chitosan- metal complexes as antimicrobial agent: synthesis, characterization and Structure-activity study,” Polymer Bulletin, vol. 55, no. 1-2, pp. 105–113, 2005. View at Publisher · View at Google Scholar
  150. Y. I. Cho, H. K. No, and S. P. Meyers, “Physicochemical characteristics and functional properties of various commercial chitin and chitosan products,” Journal of Agricultural and Food Chemistry, vol. 46, no. 9, pp. 3839–3843, 1998. View at Google Scholar
  151. L. F. Del Blanco, M. S. Rodriguez, P. C. Schulz, and E. Agulló, “Influence of the deacetylation degree on chitosan emulsification properties,” Colloid and Polymer Science, vol. 277, no. 11, pp. 1087–1092, 1999. View at Publisher · View at Google Scholar · View at Scopus
  152. S. K. Rout, Physicochemical, functional, and spectroscopic analysis of crawfish chitin and chitosan as affected by process modification, dissertation, Louisiana State University, Baton Rouge, La, USA, 2001.
  153. L. D. Hall and M. Yalpani, “Formation of branched-chain, soluble polysaccharides from chitosan,” Journal of the Chemical Society, Chemical Communications, no. 23, pp. 1153–1154, 1980. View at Google Scholar · View at Scopus
  154. M. Yalpani and L. D. Hall, “Some chemical and analytical aspects of polysaccharide modifications. 3. Formation of branched-chain, soluble chitosan derivatives,” Macromolecules, vol. 17, no. 3, pp. 272–281, 1984. View at Google Scholar · View at Scopus
  155. S. M. Hudson and D. W. Jenkins, “Chitin and hitosan,” in EPST, H. F. Mark, Ed., vol. 1, pp. 569–580, Wiley, New York, NY, USA, 3rd edition, 2003. View at Google Scholar
  156. M. Morimoto, H. Saimoto, and Y. Shigemasa, “Control of functions of chitin and chitosan by chemical modification,” Trends in Glycoscience and Glycotechnology, vol. 14, no. 78, pp. 205–222, 2002. View at Google Scholar · View at Scopus
  157. R. A. A. Muzzarelli and F. Tanfani, “The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide,” Carbohydrate Polymers, vol. 5, no. 4, pp. 297–307, 1985. View at Google Scholar · View at Scopus
  158. M. Rinaudo and J. Reguant, “Polysaccharide derivatives,” in Natural Polymers and Agrofibres Composites, E. Frollini, A. Leao, and L. H. C. Mattoso, Eds., pp. 15–39, CIP—BRASIL, Sao Carlos, Brazil, 2000. View at Google Scholar
  159. L. Illum, “Chitosan and its use as a pharmaceutical excipient,” Pharmaceutical Research, vol. 15, no. 9, pp. 1326–1331, 1998. View at Publisher · View at Google Scholar · View at Scopus
  160. C. Mireles, M. Martino, J. Bouzas, and J. A. Torres, “Complex formation of chitosan and naturally occurring polyanions,” in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sanford, and J. P. Zikakis, Eds., pp. 506–515, Elsevier, New York, NY, USA, 1992. View at Google Scholar
  161. C. A. Mireles-DeWitt, Complex mechanism of chitosan and naturally occurring polyanions, M.S. thesis, Oregon State University, Corvallis, Ore, USA, 1994.
  162. G. Lang, G. Maresch, and S. Birkel, “Hydroxyalkyl chitosans,” in Chitin Handbook, R. A. A. Muzzarelli and M. G. Peter, Eds., pp. 61–66, European Chitin Society, Grottammare, Italy, 1997. View at Google Scholar
  163. G. Lang, G. Maresch, and H.-R. Lenz, “O-benzyl-N-hydroxyalkyl derivatives of chitosan and nail polish containing the same,” U.S. Patent 4954619, 1990.
  164. J. Xu, S. P. McCarthy, R. A. Gross, and D. L. Kaplan, “Chitosan film acylation and effects on biodegradability,” Macromolecules, vol. 29, no. 10, pp. 3436–3440, 1996. View at Google Scholar · View at Scopus
  165. T. Satoh, L. Vladimirov, M. Johmen, and N. Sakairi, “Preparation and thermal dehydration of N-(carboxy)acyl chitosan derivatives with high stereoregularity,” Chemistry Letters, vol. 32, no. 4, pp. 318–319, 2003. View at Google Scholar · View at Scopus
  166. K. Kurita, Y. Koyama, S. Nishimura, and M. Kamiya, “Facile preparation of water-soluble chitin from chitosan,” Chemistry Letters, vol. 9, pp. 1597–1598, 1989. View at Google Scholar
  167. K. Kurita, M. Kamiya, and S. I. Nishimura, “Solubilization of a rigid polysaccharide: controlled partial N-acetylation of chitosan to develop solubility,” Carbohydrate Polymers, vol. 16, no. 1, pp. 83–92, 1991. View at Google Scholar · View at Scopus
  168. N. Kubota and Y. Eguchi, “Facile preparation of water-soluble N-acetylated chitosan and molecular weight dependence of its water-solubility,” Polymer Journal, vol. 29, no. 2, pp. 123–127, 1997. View at Google Scholar · View at Scopus
  169. O. Somorin, N. Nishi, H. Ohnuma, S. Tokura, and J. Noguchi, “Studies on chitin. 2. Preparation of benzyl and benzoylchitins,” Polymer Journal, vol. 11, no. 5, pp. 391–396, 1979. View at Google Scholar
  170. K. Inui, K. Tsukamoto, T. Miyata, and T. Uragami, “Permeation and separation of a benzene/cyclohexane mixture through benzoylchitosan membranes,” Journal of Membrane Science, vol. 138, no. 1, pp. 67–75, 1998. View at Publisher · View at Google Scholar · View at Scopus
  171. T. Uragami, K. Tsukamoto, K. Inui, and T. Miyata, “Pervaporation characteristics of a benzoylchitosan membrane for benzene-cyclohexane mixtures,” Macromolecular Chemistry and Physics, vol. 199, no. 1, pp. 49–54, 1998. View at Google Scholar
  172. S. Hirano, Y. Yamaguchi, and M. Kamiya, “Novel N-saturated-fatty-acyl derivatives of chitosan soluble in water and in aqueous acid and alkaline solutions,” Carbohydrate Polymers, vol. 48, no. 2, pp. 203–207, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. M. Zhang and S. Hirano, “Novel N-unsaturated fatty acyl and N-trimethylacetyl derivatives of chitosan,” Carbohydrate Polymers, vol. 26, no. 3, pp. 205–209, 1995. View at Google Scholar · View at Scopus
  174. H. Sashiwa, N. Kawasaki, A. Nakayama, E. Muraki, N. Yamamoto, and S. I. Aiba, “Chemical modification of chitosan. 14: synthesis of water-soluble chitosan derivatives by simple acetylation,” Biomacromolecules, vol. 3, no. 5, pp. 1126–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  175. T. Seo, Y. Ikeda, K. Torada, Y. Nakata, and Y. Shimomura, “Synthesis of N,O-acylated chitosan and its sorptivity,” Chitin and Chitosan Research, vol. 7, pp. 212–213, 2001. View at Google Scholar
  176. K. Inoue, K. Yoshizuka, K. Ohto, and H. Nakagawa, “Solvent extraction of some metal ions with lipophilic chitosan chemically modified with functional groups of dithiocarbamate,” Chemistry Letters, no. 7, pp. 698–699, 2001. View at Google Scholar
  177. S. Nishimura, O. Kohgo, K. Kurita, C. Vittavatvong, and H. Kusuhara, “Syntheses of novel chitosan derivatives soluble in organic solvents by regioselective chemical modifications,” Chemistry Letters, vol. 1, p. 243, 1990. View at Google Scholar
  178. R. Yamaguchi, Y. Arai, T. Itoh, and S. Hirano, “Preparation of partially N-succinylated chitosans and their cross-linked gels,” Carbohydrate Research, vol. 88, no. 1, pp. 172–175, 1981. View at Google Scholar · View at Scopus
  179. K. Kurita, H. Ichikawa, H. Fujisaki, and Y. Iwakura, “Studies on chitin 8. Modification reaction of chitin in highly swollen state with aromatic cyclic carboxylic acid anhydrides,” Macromolecules Chemistry, vol. 163, pp. 1161–1169, 1982. View at Google Scholar
  180. S. Hirano, M. Zhang, B. G. Chung, and S. K. Kim, “N-acylation of chitosan fibre and the N-deacetylation of chitin fibre and chitin-cellulose blended fibre at a solid state,” Carbohydrate Polymers, vol. 41, no. 2, pp. 175–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  181. R. Jayakumar, M. Prabaharan, R. L. Reis, and J. F. Mano, “Graft copolymerized chitosan—present status and applications,” Carbohydrate Polymers, vol. 62, no. 2, pp. 142–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  182. V. K. Mourya and N. N. Inamdar, “Chitosan-modifications and applications: opportunities galore,” Reactive and Functional Polymers, vol. 68, no. 6, pp. 1013–1051, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. J. D. Merrifield, Synthesis and characterization of thiol grafted chitosan beads for mercury removal, M.S. thesis, University of Maine, Orono, Me, USA, 2002.
  184. C. Jeon and W. H. Höll, “Chemical modification of chitosan and equilibrium study for mercury ion removal,” Water Research, vol. 37, no. 19, pp. 4770–4780, 2003. View at Publisher · View at Google Scholar · View at PubMed
  185. O. A.C. Monteiro and C. Airoldi, “Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system,” International Journal of Biological Macromolecules, vol. 26, no. 2-3, pp. 119–128, 1999. View at Publisher · View at Google Scholar
  186. P. O. Osifo, A. Webster, H. van der Merwe, H. W. J. P. Neomagus, M. A. van der Gun, and D. M. Grant, “The influence of the degree of cross-linking on the adsorption properties of chitosan beads,” Bioresource Technology, vol. 99, no. 15, pp. 7377–7382, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  187. W. S. W. Ngah and S. Fatinathan, “Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads,” Chemical Engineering Journal, vol. 143, no. 1–3, pp. 62–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. W. S. Wan Ngah, C. S. Endud, and R. Mayanar, “Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads,” Reactive and Functional Polymers, vol. 50, no. 2, pp. 181–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  189. W. S. W. Ngah, S. Ab Ghani, and A. Kamari, “Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads,” Bioresource Technology, vol. 96, no. 4, pp. 443–450, 2005. View at Publisher · View at Google Scholar · View at PubMed
  190. L. Martinez, F. Agnely, B. Leclerc et al., “Cross-linking of chitosan and chitosan/poly(ethylene oxide) beads: a theoretical treatment,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 67, no. 2, pp. 339–348, 2007. View at Publisher · View at Google Scholar · View at PubMed
  191. Y. Baba, N. Matsumura, K. Shiomori, and Y. Kawano, “Selective adsorption of mercury (II) on chitosan derivatives from hydrochloric acid,” Analytical Sciences, vol. 14, no. 4, pp. 687–690, 1998. View at Google Scholar · View at Scopus
  192. R. S. Vieira and M. M. Beppu, “Mercury ion recovery using natural and crosslinked chitosan membranes,” Adsorption, vol. 11, no. 1, pp. 731–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. B. J. Mcafee, W. D. Gould, J. C. Nadeau, and A. C. A. Da Costa, “Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae,” Separation Science and Technology, vol. 36, no. 14, pp. 3207–3222, 2001. View at Publisher · View at Google Scholar
  194. B. Martel, M. Devassine, G. Crini, M. Weltrowski, M. Bourdonneau, and M. Morcellet, “Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative,” Journal of Polymer Science A, vol. 39, no. 1, pp. 169–176, 2001. View at Google Scholar
  195. K. Sreenivasan, “Synthesis and preliminary studies on a β-cyclodextrin-coupled chitosan as a novel adsorbent matrix,” Journal of Applied Polymer Science, vol. 69, no. 6, pp. 1051–1055, 1998. View at Google Scholar · View at Scopus
  196. T. Tojima, H. Katsura, S. M. Han et al., “Preparation of an α-cyclodextrin-linked chitosan derivative via reductive amination strategy,” Journal of Polymer Science A, vol. 36, no. 11, pp. 1965–1968, 1998. View at Google Scholar · View at Scopus
  197. G. Crini, “Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment,” Progress in Polymer Science, vol. 30, no. 1, pp. 38–70, 2005. View at Publisher · View at Google Scholar
  198. Z. Li, X. P. Zhuang, X. F. Liu, Y. L. Guan, and K. D. Yao, “Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution,” Polymer, vol. 43, no. 4, pp. 1541–1547, 2002. View at Google Scholar
  199. N. Vallapa, O. Wiarachai, N. Thongchul et al., “Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization,” Carbohydrate Polymers, vol. 83, no. 2, pp. 868–875, 2011. View at Publisher · View at Google Scholar
  200. A. Domard, M. Rinaudo, and C. Terrassin, “New method for the quaternization of chitosan,” International Journal of Biological Macromolecules, vol. 8, no. 2, pp. 105–107, 1986. View at Google Scholar
  201. A. Domard, C. Gey, M. Rinaudo, and C. Terrassin, “C13 and H1 NMR spectroscopy of chitosan and N-trimethyl chloride derivatives,” International Journal of Biological Macromolecules, vol. 9, no. 4, pp. 233–237, 1987. View at Google Scholar · View at Scopus
  202. C. H. Kim, J. W. Choi, H. J. Chun, and K. S. Choi, “Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity,” Polymer Bulletin, vol. 38, no. 4, pp. 387–393, 1997. View at Google Scholar
  203. E. A. Stepnova, V. E. Tikhonov, T. A. Babushkina et al., “New approach to the quaternization of chitosan and its amphiphilic derivatives,” European Polymer Journal, vol. 43, no. 6, pp. 2414–2421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. A. M. Naggi, G. Torri, T. Compagnoni, and B. Casu, “Synthesis and physico-chemical properties of a polyampholyte chitosan 6-sulfate,” in Chitin in Nature and Technology, R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, Eds., pp. 371–407, Plenum, New York, NY, USA, 1986. View at Google Scholar
  205. M. Terbojevich, C. Carraro, and A. Cosani, “Solution studies of chitosan 6-O-sulfate,” Die Makromolekulare Chemie, vol. 190, pp. 2847–2855, 1989. View at Google Scholar
  206. K. R. Holme and A. S. Perlin, “Chitosan N-sulfate. A water-soluble polyelectrolyte,” Carbohydrate Research, vol. 302, no. 1-2, pp. 7–12, 1997. View at Publisher · View at Google Scholar · View at Scopus
  207. A. Heras, N. M. Rodríguez, V. M. Ramos, and E. Agulló, “N-methylene phosphonic chitosan: a novel soluble derivative,” Carbohydrate Polymers, vol. 44, no. 1, pp. 1–8, 2000. View at Google Scholar
  208. V. M. Ramos, N. M. Rodríguez, M. F. Díaz, M. S. Rodríguez, A. Heras, and E. Agulló, “N-methylene phosphonic chitosan. Effect of preparation methods on its properties,” Carbohydrate Polymers, vol. 52, no. 1, pp. 39–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. K. Kurita, S. Inoue, and S. I. Nishimura, “Preparation of soluble chitin derivatives as reactive precursors for controlled modifications. Tosyl- and iodo-chitins,” Journal of Polymer Science A, vol. 29, no. 6, pp. 937–939, 1991. View at Google Scholar · View at Scopus
  210. K. Kurita, Y. Koyama, S. Inoue, and S. I. Nishimura, “((Diethylamino)ethyl)chitins: preparation and properties of novel animated chitin derivatives,” Macromolecules, vol. 23, no. 11, pp. 2865–2869, 1990. View at Google Scholar · View at Scopus
  211. R. A. A. Muzzarelli, F. Tanfani, M. Emanuelli, and S. Mariotti, “N-(carboxymethylidene)chitosans and N-(carboxymethyl)chitosans: novel chelating polyampholytes obtained from chitosan glyoxylate,” Carbohydrate Research, vol. 107, no. 2, pp. 199–214, 1982. View at Google Scholar · View at Scopus
  212. G. K. Moore and G. A. F. Roberts, “Reactions of chitosan: 4. Preparation of organosoluble derivatives of chitosan,” International Journal of Biological Macromolecules, vol. 4, no. 4, pp. 246–249, 1982. View at Google Scholar · View at Scopus
  213. P. Albersheim and A. G. Darvill, “Oligosaccharins,” Scientific American, vol. 253, pp. 58–64, 1985. View at Google Scholar
  214. N. Benhamou and P. J. Lafontaine, “Ultrastructural and cytochemical characterization of elicitor-induced structural responses in tomato root tissues infected by Fusarium oxysporum f.Sp. radicis-lycopersici,” Planta, vol. 197, no. 1, pp. 89–102, 1994. View at Google Scholar
  215. A. El Ghaouth, J. Arul, A. Asselin, and N. Benhamou, “Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer,” Mycological Research, vol. 96, pp. 769–779, 1992. View at Google Scholar
  216. A. El Ghaouth, R. Pannampalam, F. Castaigne, and J. Arul, “Chitosan coating to extend the storage life of tomatoes,” Hortscience, vol. 27, pp. 1016–1018, 1992. View at Google Scholar
  217. E. A. Quintana-Obregón, M. Plascencia-Jatomea, R. I. Sánchez-Mariñez et al., “Effects of middle-viscosity chitosan on Ramularia cercosporelloides,” Crop Protection, vol. 30, no. 1, pp. 88–90, 2011. View at Publisher · View at Google Scholar
  218. W. Xia, P. Liu, J. Zhang, and J. Chen, “Biological activities of chitosan and chitooligosaccharides,” Food Hydrocolloids, vol. 25, pp. 170–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  219. E.-R. Kenawy, F. I. Abdel-Hay, A. A. El-Magd, and Y. Mahmoud, “Biologically active polymers: modification and anti-microbial activity of chitosan derivatives,” Journal of Bioactive and Compatible Polymers, vol. 22, pp. 525–538, 2007. View at Google Scholar
  220. M. E. I. Badawy and E. I. Rabea, “Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit,” Postharvest Biology and Technology, vol. 51, no. 1, pp. 110–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. Z. Guo, R. Chen, R. Xing et al., “Novel derivatives of chitosan and their antifungal activities in vitro,” Carbohydrate Research, vol. 341, no. 3, pp. 351–354, 2006. View at Publisher · View at Google Scholar · View at PubMed
  222. Z. Guo, R. Xing, S. Liu et al., “Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan,” Carbohydrate Research, vol. 342, no. 10, pp. 1329–1332, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  223. D. F. Kendra and L. A. Hadwiger, “Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum,” Experimental Mycology, vol. 8, no. 3, pp. 276–281, 1984. View at Google Scholar · View at Scopus
  224. S. Sekiguchi, Y. Miura, H. Kaneko et al., “Molecular weight dependency of antimicrobial activity by chitosan oligomers,” in Food Hydrocolloids: Structures, Properties, and Functions, K. Nishinari and E. Doi, Eds., pp. 71–76, Plenum, New York, NY, USA, 1994. View at Google Scholar
  225. V. E. Tikhonov, E. A. Stepnova, V. G. Babak et al., “Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives,” Carbohydrate Polymers, vol. 64, no. 1, pp. 66–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. G. J. Tsai and W. H. Su, “Antibacterial activity of shrimp chitosan against Escherichia coli,” Journal of Food Protection, vol. 62, no. 3, pp. 239–243, 1999. View at Google Scholar · View at Scopus
  227. Y. Uchida, M. Izume, and A. Ohtakara, “Preparation of chitosan oligomers with purified chitosanase and its application,” in Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, G. Skjåk-Bræk et al., Ed., pp. 373–382, Elsevier, London, UK, 1989. View at Google Scholar
  228. M. Aider, “Chitosan application for active bio-based films production and potential in the food industry: review,” LWT—Food Science and Technology, vol. 43, no. 6, pp. 837–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  229. S. Bautista-Baños, A. N. Hernández-Lauzardo, M. G. Velázquez-Del Valle et al., “Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities,” Crop Protection, vol. 25, no. 2, pp. 108–118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  230. P. K. Dutta, S. Tripathi, G. K. Mehrotra, and J. Dutta, “Perspectives for chitosan based antimicrobial films in food applications,” Food Chemistry, vol. 114, no. 4, pp. 1173–1182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  231. M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar · View at PubMed
  232. S. Roller and N. Covill, “The antifungal properties of chitosan in laboratory media and apple juice,” International Journal of Food Microbiology, vol. 47, no. 1-2, pp. 67–77, 1999. View at Publisher · View at Google Scholar · View at Scopus
  233. V. M. Chau, H. D. Pham, L. H. Dang, D. H. Trinh, and T. H. Hoang, “Use of chitosan in agriculture and food preservation. I. Chitosan as a fresh fruit pres,” Vietnam Journal of Chemistry, vol. 34, pp. 29–33, 1996. View at Google Scholar
  234. C. S. Chen, W. Y. Liau, and G. J. Tsai, “Antibacterial effects of N-sulfonated and N-sulfobenzoyl chitosan and application to oyster preservation,” Journal of Food Protection, vol. 61, no. 9, pp. 1124–1128, 1998. View at Google Scholar · View at Scopus
  235. A. El Ghaouth, J. Arul, J. Grenier, and A. Asselin, “Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits,” Phytopathology, vol. 82, pp. 398–402, 1992. View at Google Scholar
  236. A. N. Hernández-Lauzardo, S. Bautista-Baños, M. G. Velázquez-del Valle, M. G. Méndez-Montealvo, M. M. Sánchez-Rivera, and L. A. Bello-Pérez, “Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill,” Carbohydrate Polymers, vol. 73, no. 4, pp. 541–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  237. K. Ito, E. Tsuburaya, and K. Kawamura, “Acetic acid and chitosan hydrolyzates as microbicides in rice paddies,” Japanese Kokai Tokkyo Koho, JP 06227930, 1994.
  238. J. Knowles and S. Roller, “Efficacy of chitosan, carvacrol, and a hydrogen peroxide-based biocide against foodborne microorganisms in suspension and adhered to stainless steel,” Journal of Food Protection, vol. 64, no. 10, pp. 1542–1548, 2001. View at Google Scholar · View at Scopus
  239. A. M. Papineau, D. G. Hoover, D. Knorr, and D. F. Farkas, “Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure,” Food Biotechnology, vol. 5, no. 1, pp. 45–57, 1991. View at Google Scholar · View at Scopus
  240. J. Rhoades and S. Roller, “Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods,” Applied and Environmental Microbiology, vol. 66, no. 1, pp. 80–86, 2000. View at Google Scholar · View at Scopus
  241. H. J. Seo, K. Mitsuhashi, and H. Tanibe, “Antibacterial and antifungal fiber blended by chitosan,” in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sandford, and J. P. Zikakis, Eds., pp. 34–40, Elsevier, New York, NY, USA, 1992. View at Google Scholar
  242. A. K. Sinha, A. K. Chowdhury, and A. R. Das, “Chitosan induces resistance in crop plants against their fungal pathogens,” Industrial Phytopathology, vol. 46, pp. 411–414, 1993. View at Google Scholar
  243. N. R. Sudarshan, D. G. Hoover, and D. Knorr, “Antibacterial action of chitosan,” Food Biotechnology, vol. 6, no. 3, pp. 257–272, 1992. View at Google Scholar · View at Scopus
  244. G. H. Wang, “Inhibition and inactivation of five species of foodborne pathogens by chitosan,” Journal of Food Protection, vol. 55, pp. 916–919, 1992. View at Google Scholar
  245. X. Liu, Y. G. Du, and X. F. Bai, “Relieving effects of oligoglucosamine on the inhibition induced by deoxynivalenol in wheat embryo cells,” Acta Botanica Sinica, vol. 43, pp. 370–374, 2001. View at Google Scholar
  246. C. R. Allan and L. A. Hadwiger, “The fungicidal effect of chitosan on fungi of varying cell wall composition,” Experimental Mycology, vol. 3, no. 3, pp. 285–287, 1979. View at Google Scholar · View at Scopus
  247. P. J. Chien and C. C. Chou, “Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata),” Journal of the Science of Food and Agriculture, vol. 86, no. 12, pp. 1964–1969, 2006. View at Publisher · View at Google Scholar · View at Scopus
  248. N. Benhamou, P. J. Lafontaine, and M. Nicole, “Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan,” Phytopathology, vol. 84, no. 12, pp. 1432–1444, 1994. View at Google Scholar · View at Scopus
  249. A. El Ghaouth, J. Arul, C. Wilson, and N. Benhamou, “Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit,” Physiological and Molecular Plant Pathology, vol. 44, no. 6, pp. 417–432, 1994. View at Google Scholar
  250. M. E. I. Badawy, S. M. Ahmed, and E. I. Rabea, “Bactericidal and fungicidal activities of different molecular weight chitosan samples,” Journal of Pest Control and Environmental Sciences, vol. 14, pp. 19–34, 2006. View at Google Scholar
  251. L. H. Cheah and B. B. C. Page, “Trichoderma spp. for potential biocontrol of clubroot of vegetable brassicas,” in Proceedings of 50th New Zealand Plant Protection Conference, pp. 150–153, 1997.
  252. H. E. Wade and J. A. Lamondia, “Chitosan inhibits Rhizoctonia fragariae but not strawberry black root rot,” Advanced Strawberry Research, vol. 13, pp. 26–31, 1994. View at Google Scholar
  253. S. Bautista-Baños, M. Hernández-López, E. Bosquez-Molina, and C. L. Wilson, “Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit,” Crop Protection, vol. 22, no. 9, pp. 1087–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  254. S. Bautista-Baños, M. Hernández-López, and E. Bosquez-Molina, “Growth inhibition of selected fungi by chitosan and plant extracts,” Mexican Journal of Phytopathology, vol. 22, pp. 178–186, 2004. View at Google Scholar
  255. M. E. I. Badawy, “Effect of depolymerization degree of the natural biopolymer chitosan on some plant pathogenic bacteria and fungi,” Journal of Pest Control and Environmental Sciences, vol. 15, pp. 69–85, 2007. View at Google Scholar
  256. SE. K. Kim and N. Rajapakse, “Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review,” Carbohydrate Polymers, vol. 62, no. 4, pp. 357–368, 2005. View at Publisher · View at Google Scholar · View at Scopus
  257. W. F. Zhang, D. F. Li, W. Q. Lu, and G. F. Yi, “Effects of isomalto-oligosaccharides on broiler performance and intestinal microflora,” Poultry Science, vol. 82, no. 4, pp. 657–663, 2003. View at Google Scholar
  258. J. Xu, X. Zhao, X. Han, and Y. Du, “Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro,” Pesticide Biochemistry and Physiology, vol. 87, no. 3, pp. 220–228, 2007. View at Publisher · View at Google Scholar
  259. S. Hirano and N. Nagao, “Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens,” Agriculture and Biological Chemistry, vol. 53, pp. 3065–3066, 1989. View at Google Scholar
  260. S. Bautista-Baños, M. Hernández-López, A. N. Hernández-Lauzardo, J. L. Trejo-Espino, M. Bautista-Cerón, and G. E. Melo-Giorgana, “Effect of chitosan on in vitro development and morphology of two isolates of Colletotrichum gloeosporioides (Penz.) Penz. and Sacc,” Mexican Journal of Phytopathology, vol. 23, pp. 62–67, 2005. View at Google Scholar
  261. X. Meng, L. Yang, J. F. Kennedy, and S. Tian, “Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit,” Carbohydrate Polymers, vol. 81, no. 1, pp. 70–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  262. A. N. Hernández-Lauzardo, M. Hernández-Martínez, M. G. Velázquez-del Valle, and G. E. Melo-Giorgana, “Actividad antifúngica del quitosano en el control de Rhizopus stolonifer (Ehrenb.: Fr) Vuill. y Mucor spp,” Revista Mexicana de Fitopatología, vol. 25, pp. 109–113, 2007. View at Google Scholar
  263. C. Chittenden and T. Singh, “In vitro evaluation of combination of Trichoderma harzianum and chitosan for the control of sapstain fungi,” Biological Control, vol. 50, no. 3, pp. 262–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  264. Z. M. Kochkina, H. Pospieszny, and S. N. Chrkov, “Inhibition by chitosan of productive infection of the T-series bacteriophages in an Escherichia coli culture,” Microbiology, vol. 64, pp. 173–176, 1995. View at Google Scholar
  265. G. Ma, D. Yang, Y. Zhou, M. Xiao, J. F. Kennedy, and J. Nie, “Preparation and characterization of water-soluble N-alkylated chitosan,” Carbohydrate Polymers, vol. 74, no. 1, pp. 121–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  266. M. Másson, J. Holappa, M. Hjálmarsdóttir, O. V. Rúnarsson, T. Nevalainen, and T. Järvinen, “Antimicrobial activity of piperazine derivatives of chitosan,” Carbohydrate Polymers, vol. 74, no. 3, pp. 566–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  267. R. A. A. Muzzarelli, “Carboxymethylated chitins and chitosans,” Carbohydrate Polymers, vol. 8, no. 1, pp. 1–21, 1988. View at Google Scholar · View at Scopus
  268. F. Seyfarth, S. Schliemann, P. Elsner, and U.-C. Hipler, “Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata,” International Journal of Pharmaceutics, vol. 353, no. 1-2, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at PubMed
  269. Z. Zhong, R. Xing, S. Liu et al., “Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro,” Carbohydrate Research, vol. 343, no. 3, pp. 566–570, 2008. View at Publisher · View at Google Scholar · View at PubMed
  270. J. Holappa, T. Nevalainen, R. Safin et al., “Novel water-soluble quaternary piperazine derivatives of chitosan: synthesis and characterization,” Macromolecular Bioscience, vol. 6, no. 2, pp. 139–144, 2006. View at Publisher · View at Google Scholar · View at PubMed
  271. R. F. Borch, M. D. Bernstein, and H. D. Durst, “The cyanohydridoborate anion as a selective reducing agent,” Journal of the American Chemical Society, vol. 93, no. 12, pp. 2897–2904, 1971. View at Google Scholar · View at Scopus
  272. R. A. A. Muzzarelli, C. Muzzarelli, R. Tarsi, M. Miliani, F. Gabbanelli, and M. Cartolari, “Fungistatic activity of modified chitosans against Saprolegnia parasitica,” Biomacromolecules, vol. 2, no. 1, pp. 165–169, 2001. View at Publisher · View at Google Scholar · View at Scopus
  273. L. A. Hadwiger and J. M. Beckman, “Chitosan as a component of Pea-Fusarium solani interactions,” Plant Physiology, vol. 66, pp. 205–211, 1980. View at Google Scholar
  274. R. G. Cuero, G. Osuji, and A. Washington, “N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc,” Biotechnology Letters, vol. 13, no. 6, pp. 441–444, 1991. View at Google Scholar · View at Scopus
  275. R. G. Cuero, E. Duffus, G. Osuji, and R. Pettit, “Aflatoxin control in preharvest maize: effects of chitosan and two microbial agents,” Journal of Agricultural Science, vol. 117, no. 2, pp. 165–169, 1991. View at Google Scholar · View at Scopus
  276. P. Stossel and J. L. Leuba, “Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi,” Journal of Phytopathology, vol. 111, pp. 82–90, 1984. View at Google Scholar
  277. P. Laflamme, N. Benhamou, G. Bussières, and M. Dessureault, “Differential effect of chitosan on root rot fungal pathogens in forest nurseries,” Canadian Journal of Botany, vol. 77, no. 10, pp. 1460–1468, 1999. View at Google Scholar · View at Scopus
  278. A. J. El Ghaouth and A. Asselin, “Potential uses of chitosan in postharvest preservation of fruits and vegetables,” in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sandford, and J. P. Zikakis, Eds., p. 440, Elsevier, Amsterdam, The Netherlands, 1992. View at Google Scholar
  279. A. A. Bell, J. C. Hubbard, L. Liu, R. Michael Davis, and K. V. Subbarao, “Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery,” Plant Disease, vol. 82, no. 3, pp. 322–328, 1998. View at Google Scholar · View at Scopus
  280. F. Daayf, M. El Bellaj, M. El Hassni, F. J'Aiti, and I. El Hadrami, “Elicitation of soluble phenolics in date palm (Phoenix dactylifera) callus by Fusarium oxysporum f. sp. albedinis culture medium,” Environmental and Experimental Botany, vol. 49, no. 1, pp. 41–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  281. M. El Hassni, A. El Hadrami, F. Daayf, E. A. Barka, and I. El Hadrami, “Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots,” Phytopathologia Mediterranea, vol. 43, no. 2, pp. 195–204, 2004. View at Google Scholar
  282. J. G. Murphy, S. M. Rafferty, and A. C. Cassells, “Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae),” Applied Soil Ecology, vol. 15, no. 2, pp. 153–158, 2000. View at Publisher · View at Google Scholar
  283. K. K. Pal and B. McSpadden Gardener, “Biological control of plant pathogens,” The Plant Health Instructor, vol. 2, pp. 1117–1142, 2006. View at Publisher · View at Google Scholar
  284. A. K. Uppal, A. El Hadrami, L. R. Adam, M. Tenuta, and F. Daayf, “Biological control of potato Verticillium wilt under controlled and field conditions using selected bacterial antagonists and plant extracts,” Biological Control, vol. 44, no. 1, pp. 90–100, 2008. View at Publisher · View at Google Scholar
  285. G. K. Agrawal, R. Rakwal, S. Tamogami, M. Yonekura, A. Kubo, and H. Saji, “Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings,” Plant Physiology and Biochemistry, vol. 40, no. 12, pp. 1061–1069, 2002. View at Publisher · View at Google Scholar · View at Scopus
  286. W. Lin, X. Hu, W. Zhang, W. John Rogers, and W. Cai, “Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice,” Journal of Plant Physiology, vol. 162, no. 8, pp. 937–944, 2005. View at Publisher · View at Google Scholar · View at Scopus
  287. S. Boonlertnirun, C. Boonraung, and R. Suvanasara, “Application of chitosan in Rice production,” Journal of Metals, Materials and Minerals, vol. 18, pp. 47–52, 2008. View at Google Scholar
  288. D. Zeng and Y. Shi, “Preparation and application of a novel environmentally friendly organic seed coating for rice,” Journal of the Science of Food and Agriculture, vol. 89, no. 13, pp. 2181–2185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  289. G. F. Burkhanova, L. G. Yarullina, and I. V. Maksimov, “The control of wheat defense responses during infection with Bipolaris sorokiniana by chitooligosaccharides,” Russian Journal of Plant Physiology, vol. 54, no. 1, pp. 104–110, 2007. View at Publisher · View at Google Scholar
  290. R. M. Khairullin, L. G. Yarullina, N. B. Troshina, and I. E. Akhmetova, “Chitooligosaccharide-induced activation of O-phenylenediamine oxidation by wheat seedlings in the presence of oxalic acid,” Biochemistry, vol. 66, no. 3, pp. 286–289, 2001. View at Publisher · View at Google Scholar · View at Scopus
  291. X. F. Liu, Y. L. Guan, D. Z. Yang, Z. Li, and K. D. Yao, “Antibacterial action of chitosan and carboxymethylated chitosan,” Journal of Applied Polymer Science, vol. 79, no. 7, pp. 1324–1335, 2001. View at Google Scholar · View at Scopus
  292. M. V. B. Reddy, J. Arul, P. Angers, and L. Couture, “Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality,” Journal of Agricultural and Food Chemistry, vol. 47, no. 3, pp. 1208–1216, 1999. View at Publisher · View at Google Scholar
  293. A. B. Falcón, J. C. Cabrera, D. Costales et al., “The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae,” World Journal of Microbiology and Biotechnology, vol. 24, no. 1, pp. 103–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  294. H. Yin, X. Bai, and Y. Du, “The primary study of oligochitosan inducing resistance to S. sclerotiorum on B. napus,” Journal of Biotechnology, vol. 136S, pp. 600–601, 2008. View at Google Scholar
  295. Z. G. Lu, X. G. Qian, and Y. Peng, “An applied study of chitoligmer rapeseed coating agent,” Seed, vol. 4, pp. 38–40, 2003. View at Google Scholar
  296. S. N. Chirkov, A. V. Il'ina, N. A. Surgucheva et al., “Effect of chitosan on systemic viral infection and some defense responses in potato plants,” Russian Journal of Plant Physiology, vol. 48, no. 6, pp. 774–779, 2001. View at Publisher · View at Google Scholar
  297. S. N. Chirkov, “The antiviral activity of chitosan,” Applied Biochemistry and Microbiology, vol. 38, no. 1, pp. 1–8, 2002. View at Publisher · View at Google Scholar · View at Scopus
  298. F. Faoro, S. Sant, M. Iriti, and A. Appiano, “Chitosan-elicited resitance to plant viruses: a histochemical and cytochemical study,” in Chitin Enzymology, R. A. A. Muzzarelli, Ed., pp. 57–62, Atec, Grottammare, Italy, 2001. View at Google Scholar
  299. W. Guang Liu and K. De Yao, “Chitosan and its derivatives—a promising non-viral vector for gene transfection,” Journal of Controlled Release, vol. 83, no. 1, pp. 1–11, 2002. View at Publisher · View at Google Scholar · View at Scopus
  300. H. Pospieszny, “Antiviroid activity of chitosan,” Crop Protection, vol. 16, no. 2, pp. 105–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  301. H. Pospieszny, S. Chirkov, and J. Atabekov, “Induction of antiviral resistance in plants by chitosan,” Plant Science, vol. 79, no. 1, pp. 63–68, 1991. View at Google Scholar · View at Scopus
  302. N. Ben-Shalom, R. Ardi, R. Pinto, C. Aki, and E. Fallik, “Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan,” Crop Protection, vol. 22, no. 2, pp. 285–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  303. J. Postma and M. J. E. I. M. Willemsen-De Klein, “Biological control of Pythium aphanidermatum in cucumber with combined applications of bacterial antagonists with chitosan,” IOBC/wprs Bulletin, vol. 27, pp. 101–104, 2004. View at Google Scholar
  304. J. Postma, L. H. Stevens, G. L. Wiegers, E. Davelaar, and E. H. Nijhuis, “Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan,” Biological Control, vol. 48, no. 3, pp. 301–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  305. N. I. Vasyukova, S. V. Zinoveva, L. I. Ilinskaya et al., “Modulation of plant resistance to diseases by water-soluble chitosan,” Applied Biochemistry and Microbiology, vol. 37, no. 1, pp. 103–109, 2001. View at Google Scholar
  306. N. Benhamou, J. W. Kloepper, and S. Tuzun, “Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response,” Planta, vol. 204, no. 2, pp. 153–168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  307. A. Aziz, A. Heyraud, and B. Lambert, “Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea,” Planta, vol. 218, no. 5, pp. 767–774, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  308. Z. Muñoz, A. Moret, and S. Garcés, “Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes,” Crop Protection, vol. 28, no. 1, pp. 36–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  309. P. Trotel-Aziz, M. Couderchet, G. Vernet, and A. Aziz, “Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea,” European Journal of Plant Pathology, vol. 114, no. 4, pp. 405–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  310. Y.-J. Guan, J. Hu, X.-J. Wang, and C.-X. Shao, “Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress,” Journal of Zhejiang University Science B, vol. 10, no. 6, pp. 427–433, 2009. View at Publisher · View at Google Scholar · View at PubMed
  311. C.-X. Shao, J. Hu, W.-J. Song, and W.-M. Hu, “Effects of seed priming with chitosan solutions of different acidity on seed germination and physiological characteristics of maize seedling,” Journal of the Zhejiang University—Agriculture and Life Science, vol. 31, no. 6, pp. 705–708, 2005. View at Google Scholar
  312. Y. G. Zhou, Y. D. Yang, Y. G. Qi, Z. M. Zhang, X. J. Wang, and X. J. Hu, “Effects of chitosan on some physiological activity in germinating seed of peanut,” Journal of Peanut Science, vol. 31, pp. 22–25, 2002. View at Google Scholar
  313. S. L. Ruan and Q. Z. Xue, “Effects of chitosan coating on seed germination and salt-tolerance of seedlings in hybrid rice (Oryza sativa L.),” Acta Agronomica Sinica, vol. 28, pp. 803–808, 2002. View at Google Scholar
  314. F. Faoro, D. Maffi, D. Cantu, and M. Iriti, “Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole,” BioControl, vol. 53, no. 2, pp. 387–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  315. G. Manjunatha, K. S. Roopa, G. N. Prashanth, and H. Shekar Shetty, “Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation,” Pest Management Science, vol. 64, no. 12, pp. 1250–1257, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  316. C. Molloy, L. H. Cheah, and J. P. Koolaard, “Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan,” Postharvest Biology and Technology, vol. 33, no. 1, pp. 61–65, 2004. View at Publisher · View at Google Scholar · View at Scopus
  317. P. Nandeeshkumar, J. Sudisha, K. K. Ramachandra, H. S. Prakash, S. R. Niranjana, and S. H. Shekar, “Chitosan induced resistance to downy mildew in sunflower caused by Plasmopara halstedii,” Physiological and Molecular Plant Pathology, vol. 72, no. 4–6, pp. 188–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. G. Lizama-Uc, I. A. Estrada-Mota, M. G. Caamal-Chan et al., “Chitosan activates a MAP-kinase pathway and modifies abundance of defense-related transcripts in calli of Cocos nucifera L,” Physiological and Molecular Plant Pathology, vol. 70, no. 4–6, pp. 130–141, 2007. View at Publisher · View at Google Scholar
  319. S. I. Park, S. D. Stan, M. A. Daeschel, and Y. Zhao, “Antifungal coatings on fresh strawberries (Fragaria x ananassa) to control mold growth during cold storage,” Journal of Food Science, vol. 70, no. 4, pp. M202–M207, 2005. View at Google Scholar · View at Scopus
  320. A. El-Ghaouth, J. L. Smilanick, and C. L. Wilson, “Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit,” Postharvest Biology and Technology, vol. 19, no. 1, pp. 103–110, 2000. View at Publisher · View at Google Scholar · View at Scopus
  321. C. L. Fisk, A. M. Silver, B. C. Strik, and Y. Zhao, “Postharvest quality of hardy kiwifruit (Actinidia arguta 'Ananasnaya') associated with packaging and storage conditions,” Postharvest Biology and Technology, vol. 47, no. 3, pp. 338–345, 2008. View at Publisher · View at Google Scholar · View at Scopus
  322. L. A. Terry and D. C. Joyce, “Elicitors of induced disease resistance in postharvest horticultural crops: a brief review,” Postharvest Biology and Technology, vol. 32, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  323. R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, Eds., Chitin in Nature and Technology, Plenum, New York, NY, USA, 1986.
  324. G. Romanazzi, F. Nigro, A. Ippolito, D. Di Venere, and M. Salerno, “Effects of pre- and postharvest chitosan treatments to control storage grey mould of table grapes,” Journal of Food Science, vol. 67, pp. 1862–1867, 2002. View at Google Scholar
  325. R. K. Bai, M. Y. Huang, and Y. Y. Jiang, “Selective permeabilities of chitosan-acetic acid comlex membrane and chitosan-polymer complex membranes for oxygen and carbondioxide,” Polymer Bulletin, vol. 20, pp. 83–88, 1988. View at Google Scholar
  326. A. El Ghaouth, J. Arul, R. Pannampalam, and M. Boulet, “Chitosan coating effect on storability and quality of fresh strawberries,” Journal of Food Science, vol. 56, pp. 1618–1621, 1991. View at Google Scholar
  327. C. Han, Y. Zhao, S. W. Leonard, and M. G. Traber, “Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus),” Postharvest Biology and Technology, vol. 33, no. 1, pp. 67–78, 2004. View at Publisher · View at Google Scholar · View at Scopus
  328. P. Hernández-Muñoz, E. Almenar, M. J. Ocio, and R. Gavara, “Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa),” Postharvest Biology and Technology, vol. 39, no. 3, pp. 247–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  329. M. V. Bhaskara Reddy, K. Belkacemi, R. Corcuff, F. Castaigne, and J. Arul, “Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea quality of strawberry fruit,” Postharvest Biology and Technology, vol. 20, no. 1, pp. 39–51, 2000. View at Publisher · View at Google Scholar · View at Scopus
  330. M. Vargas, A. Albors, A. Chiralt, and C. González-Martínez, “Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings,” Postharvest Biology and Technology, vol. 41, no. 2, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  331. H. Li and T. Yu, “Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit,” Journal of the Science of Food and Agriculture, vol. 81, no. 2, pp. 269–274, 2001. View at Google Scholar
  332. Y. Caro and J. Joas, “Postharvest control of litchi pericarp browning (cv. Kwai Mi) by combined treatments of chitosan and organic acids: II. Effect of the initial water content of pericarp,” Postharvest Biology and Technology, vol. 38, no. 2, pp. 137–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  333. Y. Jiang, J. Li, and W. Jiang, “Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature,” LWT—Food Science and Technology, vol. 38, no. 7, pp. 757–761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  334. J. Joas, Y. Caro, M. N. Ducamp, and M. Reynes, “Postharvest control of pericarp browning of litchi fruit (Litchi chinensis Sonn cv Kwai Mi) by treatment with chitosan and organic acids. I. Effect of pH and pericarp dehydration,” Postharvest Biology and Technology, vol. 38, no. 2, pp. 128–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  335. D. Zhang and P. C. Quantick, “Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit,” Postharvest Biology and Technology, vol. 12, no. 2, pp. 195–202, 1997. View at Publisher · View at Google Scholar · View at Scopus
  336. H. Dong, L. Cheng, J. Tan, K. Zheng, and Y. Jiang, “Effects of chitosan coating on quality and shelf life of peeled litchi fruit,” Journal of Food Engineering, vol. 64, no. 3, pp. 355–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  337. Y. Jiang and Y. Li, “Effects of chitosan coating on postharvest life and quality of longan fruit,” Food Chemistry, vol. 73, no. 2, pp. 139–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  338. L. T. Pen and Y. M. Jiang, “Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut,” LWT—Food Science and Technology, vol. 36, no. 3, pp. 359–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  339. P. J. Chien, F. Sheu, and H. R. Lin, “Coating citrus (Murcott tangor) fruit with low molecular weight chitosan increases postharvest quality and shelf life,” Food Chemistry, vol. 100, no. 3, pp. 1160–1164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  340. H. Li and T. Yu, “Effect of chitosan on incidence of brown rot, quality and physiological attributes of postharvest peach fruit,” Journal of the Science of Food and Agriculture, vol. 81, no. 2, pp. 269–274, 2001. View at Google Scholar · View at Scopus
  341. T. Diab, C. G. Biliaderis, D. Gerasopoulos, and E. Sfakiotakis, “Physicochemical properties and application of pullulan edible films and coatings in fruit preservation,” Journal of the Science of Food and Agriculture, vol. 81, no. 10, pp. 988–1000, 2001. View at Publisher · View at Google Scholar
  342. J. J. Kester and O. R. Fennema, “Edible films and coatings: a review,” Food Technology, vol. 60, pp. 47–59, 1986. View at Google Scholar
  343. C. Han, C. Lederer, M. McDaniel, and Y. Zhao, “Sensory evaluation of fresh strawberries (Fragaria ananassa) coated with chitosan-based edible coatings,” Journal of Food Science, vol. 70, no. 3, pp. S172–S178, 2005. View at Google Scholar · View at Scopus
  344. G. Romanazzi, F. Nigro, and A. Ippolito, “Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries,” Postharvest Biology and Technology, vol. 29, no. 1, pp. 73–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  345. J. Liu, S. Tian, X. Meng, and Y. Xu, “Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit,” Postharvest Biology and Technology, vol. 44, no. 3, pp. 300–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  346. X. Meng, B. Li, J. Liu, and S. Tian, “Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage,” Food Chemistry, vol. 106, no. 2, pp. 501–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  347. J. E. Fajardo, T. G. McCollum, R. E. McDonald, and R. T. Mayer, “Differential induction of proteins in orange flavedo by biologically based elicitors and challenged by Penicillium digitatum Sacc,” Biological Control, vol. 13, no. 3, pp. 143–151, 1998. View at Publisher · View at Google Scholar · View at Scopus
  348. D. Zhang and P. C. Quantick, “Antifungal effects of chitosan coating on fresh strawberries and raspberries during storage,” Journal of Horticultural Science and Biotechnology, vol. 73, no. 6, pp. 763–767, 1998. View at Google Scholar · View at Scopus
  349. T. Chen, “The relationship between specific properties and use of chitosan,” in Proceedings of the National Symposium on Nature Marine Product and Nature Biological Mmedicine, pp. 282–284, Beijing, China, 1998.
  350. S. Tokura, K. Ueno, S. Miyazaki, and N. Nishi, “Molecular weight dependent antimicrobial activity by chitosan,” Macromolecular Symposia, vol. 120, pp. 1–9, 1997. View at Google Scholar
  351. D. V. Gerasimenko, I. D. Avdienko, G. E. Bannikova, O. Y. Zueva, and V. P. Varlamov, “Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms,” Applied Biochemistry and Microbiology, vol. 40, no. 3, pp. 253–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  352. L. Y. Zheng and J. F. Zhu, “Study on antimicrobial activity of chitosan with different molecular weights,” Carbohydrate Polymers, vol. 54, no. 4, pp. 527–530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  353. K. W. Kim, R. L. Thomas, C. Lee, and H. J. Park, “Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan,” Journal of Food Protection, vol. 66, no. 8, pp. 1495–1498, 2003. View at Google Scholar · View at Scopus
  354. Y. J. Jeon, P. J. Park, and SE. K. Kim, “Antimicrobial effect of chitooligosaccharides produced by bioreactor,” Carbohydrate Polymers, vol. 44, no. 1, pp. 71–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  355. Z. Jia, D. Shen, and W. Xu, “Synthesis and antibacterial activities of quaternary ammonium salt of chitosan,” Carbohydrate Research, vol. 333, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  356. S. Tokura, Y. Miura, M. Johmen, N. Nishi, and S. I. Nishimura, “Induction of drug specific antibody and the controlled release of drug by 6-O-carboxymethyl-chitin,” Journal of Controlled Release, vol. 28, no. 1–3, pp. 235–241, 1994. View at Google Scholar · View at Scopus
  357. T. Tanigawa, Y. Tanaka, H. Sashiwa, H. Saimoto, and Y. Shigemasa, “Various biological effects of chitin derivatives,” in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sandford, and J. P. Zikakis, Eds., pp. 206–215, Elsevier, London, UK, 1992. View at Google Scholar
  358. M. Shimojoh, K. Masaki, K. Kurita, and K. Fukushima, “Bactericidal effects of chitosan from squid pens on oral streptococci,” Nippon Nogeikagaku Kaishi, vol. 70, no. 7, pp. 787–792, 1996. View at Google Scholar · View at Scopus
  359. M. Yalpani, F. Johnson, and L. E. Robinson, “Antimicrobial activity of some chitosan derivatives,” in Advances in Chitin and Chitosan, C. J. Brine, P. A. Sandford, and J. P. Zikakis, Eds., pp. 543–548, Elsevier, London, UK, 1992. View at Google Scholar
  360. D. S. Chang, H. R. Cho, H. Y. Goo, and W. K. Choe, “A development of food preservative with the waste of crab processing,” Bulletin of the Korean Fisheries Society, vol. 22, pp. 70–78, 1989. View at Google Scholar
  361. K. Ueno, T. Yamaguchi, N. Sakairi, N. Nishi, and S. Tokura, “Antimicrobial activity by fractionated chitosan oligomers,” in Advances in Chitin Science, Vol. II, A. Domard, G. A. F. Roberts, and K. M. Vårum, Eds., pp. 156–161, Jacques André Publisher, Lyon, France, 1997. View at Google Scholar
  362. J. K. Hwang, H. J. Kim, S. J. Yoon, and Y. R. Pyun, “Bactericidal activity of chitosan on E. coli,” in Advances in Chitin Science, Vol. III, R. H. Chen and H. C. Chen, Eds., pp. 340–344, Rita, Taipei, Taiwan, 1998. View at Google Scholar
  363. M. Morimoto and Y. Shigemasa, “Charaterization and bioactivities of chitin and chitosan regulated by their degree of deacetylation,” Kobunshi Ronbunshu, vol. 54, pp. 621–631, 1997. View at Google Scholar
  364. B. K. Simpson, N. Gagné, I. N. A. Ashie, and E. Noroozi, “Utilization of chitosan for preservation of raw shrimp (Pandalus borealis),” Food Biotechnology, vol. 11, no. 1, pp. 25–44, 1997. View at Google Scholar · View at Scopus
  365. G. Ikinci, S. Şenel, H. Akincibay et al., “Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis,” International Journal of Pharmaceutics, vol. 235, no. 1-2, pp. 121–127, 2002. View at Publisher · View at Google Scholar
  366. T. Hongpattarakere and O. Riyaphan, “Effect of deacetylation conditions on antimicrobial activity of chitosans prepared from carapace of black tiger shrimp (Penaeus monodon),” Songklanakarin Journal of Science and Technology, vol. 30, pp. 1–9, 2008. View at Google Scholar
  367. D. H. Young, H. Köhle, and H. Kauss, “Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells,” Plant Physiology, vol. 70, pp. 1449–1454, 1982. View at Google Scholar
  368. D. H. Young and H. Kauss, “Release of calcium from suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability,” Plant Physiology, vol. 73, pp. 698–702, 1983. View at Google Scholar
  369. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, “Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly(vinyl alcohol),” Carbohydrate Research, vol. 341, no. 12, pp. 2098–2107, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  370. Y. Xie, X. Liu, and Q. Chen, “Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity,” Carbohydrate Polymers, vol. 69, no. 1, pp. 142–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  371. S. Chen, G. Wu, and H. Zeng, “Preparation of high antimicrobial activity thiourea chitosan-Ag complex,” Carbohydrate Polymers, vol. 60, no. 1, pp. 33–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  372. I. M. Helander, E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller, “Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria,” International Journal of Food Microbiology, vol. 71, no. 2-3, pp. 235–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  373. S. W. Fang, C. F. Li, and D. Y. C. Shin, “Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat,” Journal of Food Protection, vol. 57, p. 136, 1994. View at Google Scholar
  374. L. A. Hadwiger, “How chitosan, a DNA-comlexing carbohydrate activities genes associated with disease resistance in peas,” Journal of Cell Biochemistry, vol. 1, supplement 10C, 1986. View at Google Scholar
  375. B.-O. Jung, C.-H. Kim, K.-S. Choi, Y. M. Lee, and J.-J. Kim, “Preparation of amphiphilic chitosan and their antimicrobial activities,” Journal of Applied Polymer Science, vol. 72, no. 13, pp. 1713–1719, 1999. View at Google Scholar
  376. H. Liu, Y. Du, X. Wang, and L. Sun, “Chitosan kills bacteria through cell membrane damage,” International Journal of Food Microbiology, vol. 95, no. 2, pp. 147–155, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  377. S. Leuba and P. Stossel, “Chitosan and other polyamines: antifungal activity and interaction with biological membranes,” in Chitin in Nature and Technology, R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, Eds., p. 217, Plenum, New York, NY, USA, 1986. View at Google Scholar
  378. L. A. Hadwiger, D. F. Kendra, B. W. Fristensky, and W. Wagoner, “Chitosan both activates genes in plants and inhibits RNA synthesis in fungi,” in Chitin in Nature and Technology, R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, Eds., pp. 209–214, Plenum, New York, NY, USA, 1986. View at Google Scholar
  379. H. Dörnenburg and D. Knorr, “Evaluation of elicitor- and high-pressure-induced enzymatic browning utilizing potato (Solanum tuberosum) suspension cultures as a model system for plant tissues,” Journal of Agricultural and Food Chemistry, vol. 45, no. 10, pp. 4173–4177, 1997. View at Google Scholar
  380. M. V. Bhaskara Reddy, J. Arul, E. Ait-Barka, P. Angers, C. Richard, and F. Castaigne, “Effect of chitosan on growth and toxin production by Alternaria alternata f. sp. lycopersici,” Biocontrol Science and Technology, vol. 8, no. 1, pp. 33–43, 1998. View at Google Scholar · View at Scopus
  381. M. V. Bhaskara Reddy, P. Angers, F. Castaigne, and J. Arul, “Chitosan effects on blackmold rot and pathogenic factors produced by Alternaria alternata in postharvest tomatoes,” Journal of the American Society for Horticultural Science, vol. 125, no. 6, pp. 742–747, 2000. View at Google Scholar
  382. A. El Ghaouth, J. Arul, C. Wilson, and N. Benhamou, “Biochemical and cytochemical aspects of the interactions of chitosan and Botrytis cinerea in bell pepper fruit,” Postharvest Biology and Technology, vol. 12, no. 2, pp. 183–194, 1997. View at Publisher · View at Google Scholar · View at Scopus
  383. W. H. Daly, “Biocidal chitosan derivatives,” US patent no. 6,306,835, 2001.
  384. F. Li, W. G. Liu, and K. D. Yao, “Preparation of oxidized glucose-crosslinked N-alkylated chitosan membrane and in vitro studies of pH-sensitive drug delivery behaviour,” Biomaterials, vol. 23, no. 2, pp. 343–347, 2002. View at Publisher · View at Google Scholar · View at Scopus