Table of Contents Author Guidelines Submit a Manuscript
International Journal of Chemical Engineering
Volume 2009 (2009), Article ID 563420, 7 pages
http://dx.doi.org/10.1155/2009/563420
Research Article

Influence of Different Cations of N3 Dyes on Their Photovoltaic Performance and Stability

1Laboratory for Process, Environment and Energy Engineering (LEPAE), Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland

Received 16 October 2008; Accepted 13 January 2009

Academic Editor: Eugénio C. Ferreira

Copyright © 2009 Luísa Andrade et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grätzel, “Molecular photovoltaics that mimic photosynthesis,” Pure and Applied Chemistry, vol. 73, no. 3, pp. 459–467, 2001. View at Publisher · View at Google Scholar
  2. K. Zweibel, J. Mason, and V. Fthenakis, “By 2050 solar power could end U.S. dependence on foreign oil and slash greenhouse gas emissions,” Scientific American, vol. 298, no. 1, pp. 64–73, 2008. View at Google Scholar
  3. M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C, vol. 4, no. 2, pp. 145–153, 2003. View at Publisher · View at Google Scholar
  4. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar
  5. R. Amadelli, R. Argazzi, C. A. Bignozzi, and F. Scandola, “Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22,” Journal of the American Chemical Society, vol. 112, no. 20, pp. 7099–7103, 1990. View at Publisher · View at Google Scholar
  6. R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, and G. J. Meyer, “Enhanced spectral sensitivity from ruthenium(II) polypyridyl based photovoltaic devices,” Inorganic Chemistry, vol. 33, no. 25, pp. 5741–5749, 1994. View at Publisher · View at Google Scholar
  7. S. Ruile, O. Kohle, P. Péchy, and M. Grätzel, “Novel sensitisers for photovoltaic cells. Structural variations of Ru(II) complexes containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine,” Inorganica Chimica Acta, vol. 261, no. 2, pp. 129–140, 1997. View at Publisher · View at Google Scholar
  8. M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993. View at Publisher · View at Google Scholar
  9. M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” The Journal of Physical Chemistry B, vol. 107, no. 34, pp. 8981–8987, 2003. View at Publisher · View at Google Scholar
  10. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol. 47, no. 26, pp. 4213–4225, 2002. View at Publisher · View at Google Scholar
  11. A. N. M. Green, E. Palomares, S. A. Haque, J. M. Kroon, and J. R. Durrant, “Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films,” The Journal of Physical Chemistry B, vol. 109, no. 25, pp. 12525–12533, 2005. View at Publisher · View at Google Scholar
  12. L. Han, N. Koide, Y. Chiba, and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells,” Applied Physics Letters, vol. 84, no. 13, pp. 2433–2435, 2004. View at Publisher · View at Google Scholar
  13. L. Han, N. Koide, Y. Chiba et al., “Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance,” Applied Physics Letters, vol. 86, no. 21, Article ID 213501, 3 pages, 2005. View at Publisher · View at Google Scholar
  14. J. Bisquert, “Theory of the impedance of electron diffusion and recombination in a thin layer,” The Journal of Physical Chemistry B, vol. 106, no. 2, pp. 325–333, 2002. View at Publisher · View at Google Scholar
  15. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,” The Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13872–13880, 2006. View at Publisher · View at Google Scholar
  16. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, “Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy,” Solar Energy Materials and Solar Cells, vol. 87, no. 1–4, pp. 117–131, 2005. View at Publisher · View at Google Scholar
  17. F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, A. Zaban, and P. Salvador, “Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods,” The Journal of Physical Chemistry B, vol. 106, no. 2, pp. 334–339, 2002. View at Publisher · View at Google Scholar
  18. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, “Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution,” The Journal of Physical Chemistry B, vol. 104, no. 10, pp. 2287–2298, 2000. View at Publisher · View at Google Scholar
  19. J. Bisquert, A. Zaban, and P. Salvador, “Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states,” The Journal of Physical Chemistry B, vol. 106, no. 34, pp. 8774–8782, 2002. View at Publisher · View at Google Scholar
  20. F. Fabregat-Santiago, J. Bisquert, E. Palomares et al., “Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids,” The Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6550–6560, 2007. View at Publisher · View at Google Scholar
  21. M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker et al., “Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorganic Chemistry, vol. 38, no. 26, pp. 6298–6305, 1999. View at Publisher · View at Google Scholar
  22. D. Kuang, S. Ito, B. Wenger et al., “High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 128, no. 12, pp. 4146–4154, 2006. View at Publisher · View at Google Scholar
  23. Q. Wang, S. Ito, M. Grätzel et al., “Characteristics of high efficiency dye-sensitized solar cells,” The Journal of Physical Chemistry B, vol. 110, no. 50, pp. 25210–25221, 2006. View at Publisher · View at Google Scholar
  24. J. R. Macdonal, Impedance Spectroscopy, John Wiley & Sons, New York, NY, USA, 2005.