At the request of the author, this article has been retracted. The data presented in the article were published without the permission of the University of Toulouse.

View the full Retraction here.

#### References

- H. M. Issa, “Oxygen Mass Transfer in an Aerated Stirred Tank with Double Impellers: A Generalized Correlation Including Spacing Impact,”
*International Journal of Chemical Engineering*, vol. 2016, Article ID 7386453, 2016.

International Journal of Chemical Engineering

Volume 2016, Article ID 7386453, 6 pages

http://dx.doi.org/10.1155/2016/7386453

## Oxygen Mass Transfer in an Aerated Stirred Tank with Double Impellers: A Generalized Correlation Including Spacing Impact

College of Engineering, University of Salahaddin-Erbil, Erbil, Iraq

Received 4 December 2015; Accepted 12 January 2016

Academic Editor: Dmitry Murzin

Copyright © 2016 Hayder Mohammed Issa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

Stirred aerated tanks by double impellers are used in fermentation and various biological processes for water treatment, food industry, and pharmaceutical production. In this study, a generalized correlation model was developed for the dependent parameter (). The oxygen mass transfer from air to liquid takes place by rotating the double impellers (IBRC and PBPU) in the aerated tank. This model considers Reynolds number, Froude number, power number, the liquid height, and the spacing between impellers as the most significant specifications that are related to aerated tank performance. The spacing between the impellers is considered to be a design factor of such industrial equipment due to its remarkable impact on the oxygen mass transfer.

#### 1. Introduction

Stirred tanks that generate a turbulent fluid flow regime are commonly used for aeration in various industrial processes like aerobic fermentation and wastewater treatment to obtain a complete oxygen mass transfer [1]. The oxygen mass transfer in an aerated tank actually takes place in two zones: the liquid surface and liquid body. At the liquid surface, there are two types of oxygen transfer: firstly, the direct transfer of oxygen to the liquid surface due to large eddies created by impeller rotation and, secondly, the oxygen transfer by the contact of projected water droplets with air, while the oxygen mass transfer inside the liquid body occurs mainly by the entrained air bubbles from the surface [2]. As it is so difficult and complicated to determine the surface mass transfer coefficient individually because there are no exact limits between these two zones. The final oxygen mass transfer in the liquid body is considered to be the total liquid side oxygen mass transfer. Hence, the dissolved oxygen inside the liquid body would refer to the total dissolved oxygen that came from any mass transfer pattern, above, at, and below the liquid surface.

The occurring oxygen transfer mechanism in the entirely liquid (water) body is the two-film theory [3]. The oxygen transfer in the water body is related to many parameters, such as water level, tank and impeller geometry, rotation speed, the number of impellers, and many operational conditions [4–6].

The theory of oxygen transfer in the surface aerated tank is relevant to the mixing that occurs within the tank. Therefore, mixing is improved by adding extra impellers at the rotating shaft to enhance the contact area between liquid (water) and air phases [7]. As the effective resistance to the oxygen mass transfer that takes place mainly exists in the liquid side of the gas-liquid mass transfer film, other resistance is neglected. Oxygen mass transfer coefficient in the liquid, , is regarded as an indicator for mass transfer rate [8]. The gas-liquid contact interfacial area for oxygen mass transfer is highly crucial in the rational design of gas-liquid equipment [9]. The volumetric oxygen mass transfer in liquid phase is determined by a dynamic method for batch systems. Many tries were made to find a generalized correlation for oxygen mass transfer in surface aerators. There were various trends to correlate the relevant parameters with the oxygen transfer coefficient. Fuchs et al. [10] have proposed a correlation of with energy dissipation in the liquid body () for surface aerators tank volume ( L). The influence of tank and impellers geometry has been related in many correlations with oxygen transfer models. Zlokarnik [11] has correlated the oxygen mass transfer for various surface aerator geometries. He has developed a generalized oxygen mass transfer parameter, as a dimensionless parameter () that called sorption number , where, in his model, he related the surface flow characteristics and turbulence intensity with the transferred oxygen. Zlokarnik [11] has additionally related the mass transfer performance with the operational parameters such as Froude number, Reynolds number, and other geometrical factors (numbers and forms of impellers blades). He has derived a dimensionless formulation that combines the surface aerator efficiency () with aeration number and Froude number with (), for the ratio liquid to turbine diameter ratio () of 1.0:where is concentration difference (kg m^{−3}), is oxygen uptake (kgO_{2} h^{−1}), and is aerator efficiency (kgO_{2 }kW^{−1} h^{−1}).

Patil et al. [12] have tested different surface aerators for optimum with emphasis on the geometrical configuration; the affecting parameters they considered were liquid height, liquid volume, tank diameter, and impeller clearance. They derived a general correlation of oxygen mass transfer in depending upon the previous works in the same field for aeration, operation condition, and power consumption. The range of volumetric power consumption dissipation was W/m^{3}:Thakre et al. [13] have developed an oxygen transfer model for curved rotor surface aerator in oxidation ditches after they studied the liquid level effect. The model is applied for turbulent flow condition and ratio between 0.17 and 0.25:where is the blade tip angle.

Various attempts were made to correlate the oxygen transfer for diverse affecting variables in aeration process. These attempts were made by depending on the proposed relevant geometric, material, and process parameters [14–18].

The aim of this study is to develop an oxygen mass transfer model in the dual impellers gas-liquid (aerated) system showing the effects of the flow pattern, power consumption, spacing between the two impellers, and liquid height. This model of oxygen mass transfer with the relevant factors has not been studied in previous works till now for surface aerated tanks.

#### 2. Materials and Methodology

A digital dissolved oxygen probe was used in the experimental runs. The dissolved oxygen measurement was achieved depending on the oxygen partial pressure with correction for the affecting factors such as the temperature. Concentration units are expressed in milligrams of oxygen per liter of water (mg/L). An average percentage error of the probes readings was calculated by least squares best fit between experimental and theoretical readings. Average percentage error was 3.49%.

During the aeration process, the mass transfer is mostly from the water surface to the inside of the liquid body. The principals of oxygen mass transfer depend on the resistance to the oxygen mass transfer, which occurs in the liquid phase. So the oxygen mass transfer coefficient in the gas phase is neglected. Before each test, the initial concentration of dissolved oxygen should be set close to zero and then water was saturated by direct contact with air [22].

The implemented calculation for the oxygen mass transfer () based on several general assumptions: the vessel is efficiently mixed; values throughout the vessel can be represented as one value. Furthermore, the saturated dissolved oxygen can be represented as one value. It was assumed that no other mass transfer occurs during the operation for the other constituents, similarly for the used nitrogen gas during the deoxygenation process. Weak heat gradient occurred during the aeration; in that manner the accompanied heat transfer was ignored.

The response time for the used probe was determined by depending upon both the experimental and theoretical results of dissolved oxygen. The theoretical values of the dissolved oxygen are determined by [23, 24]The , response time, was determined for the dissolved oxygen probe and was 8.8 sec.

The relationship between the dissolved oxygen with the time with taking in account the effect of probe response time can be represented in the following equation [25–27]:By rearranging,The effect of probe response time on the dissolved oxygen concentration measurement for aeration processes was determined by the following equation [28]:The dissolved oxygen probe response time was implied in the applied mass transfer equation that represents the experimental runs to take into account the experimental errors. It is needed to correct the measured oxygen transfer coefficient in the liquid to the standard conditions, where the following (Van’t-Hoff, Arrhenius) equation was applied [29]:The experimental runs were carried out in a cylindrical flat bottom vessel (made of transparent fiberglass) with inside diameter of 0.8 m. The schematic diagram of the system is shown in Figure 1. Three baffles of width, , are used with our experimentation, to prevent or lessen the tangential circulatory flow. The baffles have the same height of the vessel.