Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2013, Article ID 870487, 7 pages
http://dx.doi.org/10.1155/2013/870487
Research Article

Intrahepatic Lipid Content and Insulin Resistance Are More Strongly Associated with Impaired NEFA Suppression after Oral Glucose Loading Than with Fasting NEFA Levels in Healthy Older Individuals

1MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, P.O. Box 285 Hills Road, Cambridge CB20QQ, UK
2Galway Diabetes Research Centre, School of Medicine, Clinical Science Institute, NUI Galway, Galway, Ireland
3Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB20QQ, UK
4Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB20QQ, UK
5MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO166YD, UK

Received 8 January 2013; Revised 17 March 2013; Accepted 11 April 2013

Academic Editor: Carine Beysen

Copyright © 2013 Francis M. Finucane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Stefan, K. Kantartzis, and H. U. Häring, “Causes and metabolic consequences of fatty liver,” Endocrine Reviews, vol. 29, no. 7, pp. 939–960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. D. B. Savage, K. F. Petersen, and G. I. Shulman, “Mechanisms of insulin resistance in humans and possible links with inflammation,” Hypertension, vol. 45, no. 5, pp. 828–833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1343–1351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, “The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus,” The Lancet, vol. 281, no. 7285, pp. 785–789, 1963. View at Google Scholar · View at Scopus
  5. Y. D. I. Chen, A. Golay, A. L. M. Swislocki, and G. M. Reaven, “Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus,” Journal of Clinical Endocrinology and Metabolism, vol. 64, no. 1, pp. 17–21, 1987. View at Google Scholar · View at Scopus
  6. M. D. Jensen, M. Caruso, V. Heiling, and J. M. Miles, “Insulin regulation of lipolysis in nondiabetic and IDDM subjects,” Diabetes, vol. 38, no. 12, pp. 1595–1601, 1989. View at Google Scholar · View at Scopus
  7. G. Boden and G. I. Shulman, “Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction,” The European Journal of Clinical Investigation, vol. 32, no. 3, pp. 14–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Koutsari, R. Basu, R. A. Rizza, K. S. Nair, S. Khosla, and M. D. Jensen, “Nonoxidative free fatty acid disposal is greater in young women than men,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 2, pp. 541–547, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. M. Finucane, S. J. Sharp, L. R. Purslow et al., “The effects of aerobic exercise on metabolic risk, insulin sensitivity and intrahepatic lipid in healthy older people from the Hertfordshire Cohort Study: a randomised controlled trial,” Diabetologia, vol. 53, no. 4, pp. 624–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kotronen, L. Juurinen, A. Hakkarainen et al., “Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects,” Diabetes Care, vol. 31, no. 1, pp. 165–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. B. Holt, S. H. Wild, P. J. Wood et al., “Non-esterified fatty acid concentrations are independently associated with hepatic steatosis in obese subjects,” Diabetologia, vol. 49, no. 1, pp. 141–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. F. M. Finucane, J. Luan, N. J. Wareham et al., “Correlation of the leptin: adiponectin ratio with measures of insulin resistance in non-diabetic individuals,” Diabetologia, vol. 52, no. 11, pp. 2345–2349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. H. E. Syddall, A. A. Sayer, E. M. Dennison et al., “Cohort profile: the Hertfordshire Cohort Study,” International Journal of Epidemiology, vol. 34, no. 6, pp. 1234–1242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. M. Salamone, T. Fuerst, M. Visser et al., “Measurement of fat mass using DEXA: a validation study in elderly adults,” Journal of Applied Physiology, vol. 89, no. 1, pp. 345–352, 2000. View at Google Scholar · View at Scopus
  16. A. Mari, G. Pacini, E. Murphy, B. Ludvik, and J. J. Nolan, “A model-based method for assessing insulin sensitivity from the oral glucose tolerance test,” Diabetes Care, vol. 24, no. 3, pp. 539–548, 2001. View at Google Scholar · View at Scopus
  17. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  18. L. S. Szczepaniak, P. Nurenberg, D. Leonard et al., “Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population,” The American Journal of Physiology, Endocrinology and Metabolism, vol. 288, no. 2, pp. E462–E468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. T. Bickerton, R. Roberts, B. A. Fielding et al., “Adipose tissue fatty acid metabolism in insulin-resistant men,” Diabetologia, vol. 51, no. 8, pp. 1466–1474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. M. W. Bradbury, “Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis,” The American Journal of Physiology, Gastrointestinal and Liver Physiology, vol. 290, no. 2, pp. G194–G198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. B. Savage and R. K. Semple, “Recent insights into fatty liver, metabolic dyslipidaemia and their links to insulin resistance,” Current Opinion in Lipidology, vol. 21, no. 4, pp. 329–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. Bonadonna, L. C. Groop, D. C. Simonson, and R. A. DeFronzo, “Free fatty acid and glucose metabolism in human aging: evidence for operation of the Randle cycle,” The American Journal of Physiology, vol. 266, no. 3, pp. E501–E509, 1994. View at Google Scholar · View at Scopus