Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014, Article ID 309570, 11 pages
http://dx.doi.org/10.1155/2014/309570
Review Article

Intermuscular Fat: A Review of the Consequences and Causes

1Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, 10 North Green Street, BT/18/GRECC, Baltimore, MD 21201, USA
2Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201, USA
3Department of Physical Therapy, University of Utah, Salt Lake City, UT 84108, USA
4Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT 84112, USA
5Department of Orthopedics, University of Utah, Salt Lake City, UT 84108, USA

Received 24 September 2013; Accepted 18 December 2013; Published 8 January 2014

Academic Editor: Nicola Napoli

Copyright © 2014 Odessa Addison et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Stehno-Bittel, “Intricacies of fat,” Physical Therapy, vol. 88, no. 11, pp. 1265–1278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Fischer-Posovszky, M. Wabitsch, and Z. Hochberg, “Endocrinology of adipose tissue—an update,” Hormone and Metabolic Research, vol. 39, no. 5, pp. 314–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sepe, T. Tchkonia, T. Thomou, M. Zamboni, and J. L. Kirkland, “Aging and regional differences in fat cell progenitors—a mini-review,” Gerontology, vol. 57, no. 1, pp. 66–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. B. H. Goodpaster, F. L. Thaete, J.-A. Simoneau, and D. E. Kelley, “Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat,” Diabetes, vol. 46, no. 10, pp. 1579–1585, 1997. View at Google Scholar · View at Scopus
  5. B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, “Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus,” American Journal of Clinical Nutrition, vol. 71, no. 4, pp. 885–892, 2000. View at Google Scholar · View at Scopus
  6. B. H. Goodpaster, S. Krishnaswami, H. Resnick et al., “Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women,” Diabetes Care, vol. 26, no. 2, pp. 372–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Gallagher, P. Kuznia, S. Heshka et al., “Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue,” American Journal of Clinical Nutrition, vol. 81, no. 4, pp. 903–910, 2005. View at Google Scholar · View at Scopus
  8. J.-E. Yim, S. Heshka, J. Albu et al., “Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk,” International Journal of Obesity, vol. 31, no. 9, pp. 1400–1405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Wronska and Z. Kmiec, “Structural and biochemical characteristics of various white adipose tissue depots,” Acta Physiologica, vol. 205, no. 2, pp. 194–208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. L. E. Beasley, A. Koster, A. B. Newman et al., “Inflammation and race and gender differences in computerized tomography-measured adipose depots,” Obesity, vol. 17, no. 5, pp. 1062–1069, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. Malavazos, M. M. Corsi, F. Ermetici et al., “Proinflammatory cytokines and cardiac abnormalities in uncomplicated obesity: relationship with abdominal fat deposition,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 4, pp. 294–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Mohamed-Ali, S. Goodrick, A. Rawesh et al., “Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo,” The Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 12, pp. 4196–4200, 1997. View at Google Scholar · View at Scopus
  13. K. M. Pou, J. M. Massaro, U. Hoffmann et al., “Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study,” Circulation, vol. 116, no. 11, pp. 1234–1241, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Ryan and B. J. Nicklas, “Age-related changes in fat deposition in mid-thigh muscle in women: relationships with metabolic cardiovascular disease risk factors,” International Journal of Obesity, vol. 23, no. 2, pp. 126–132, 1999. View at Google Scholar · View at Scopus
  15. M. B. Snijder, M. Visser, J. M. Dekker et al., “Low subcutaneous thigh fat is a risk factor for unfavourable glucose and lipid levels, independently of high abdominal fat. The Health ABC Study,” Diabetologia, vol. 48, no. 2, pp. 301–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J.-E. Yim, S. Heshka, J. B. Albu, S. Heymsfield, and D. Gallagher, “Femoral-gluteal subcutaneous and intermuscular adipose tissues have independent and opposing relationships with CVD risk,” Journal of Applied Physiology, vol. 104, no. 3, pp. 700–707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Cartier, M. Côté, I. Lemieux et al., “Age-related differences in inflammatory markers in men: contribution of visceral adiposity,” Metabolism, vol. 58, no. 10, pp. 1452–1458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Koster, S. Stenholm, D. E. Alley et al., “Body fat distribution and inflammation among obese older adults with and without metabolic syndrome,” Obesity, vol. 18, no. 12, pp. 2354–2361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Addison, P. C. LaStayo, L. E. Dibble, and R. L. Marcus, “Inflammation, aging, and adiposity: implications for physical therapists,” Journal of Geriatric Physical Therapy, vol. 35, no. 2, pp. 86–94, 2011. View at Publisher · View at Google Scholar
  20. S. J. Prior, L. J. Joseph, J. Brandauer, L. I. Katzel, J. M. Hagberg, and A. S. Ryan, “Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 880–886, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M.-C. Dubé, S. Lemieux, M.-E. Piché et al., “The contribution of visceral adiposity and mid-thigh fat-rich muscle to the metabolic profile in postmenopausal women,” Obesity, vol. 19, no. 5, pp. 953–959, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. T. Durheim, C. A. Slentz, L. A. Bateman, S. K. Mabe, and W. E. Kraus, “Relationships between exercise-induced reductions in thigh intermuscular adipose tissue, changes in lipoprotein particle size, and visceral adiposity,” American Journal of Physiology: Endocrinology and Metabolism, vol. 295, no. 2, pp. E407–E412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. B. H. Goodpaster, C. L. Carlson, M. Visser et al., “Attenuation of skeletal muscle and strength in the elderly: the health ABC study,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2157–2165, 2001. View at Google Scholar · View at Scopus
  24. B. H. Goodpaster, P. Chomentowski, B. K. Ward et al., “Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial,” Journal of Applied Physiology, vol. 105, no. 5, pp. 1498–1503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. T. N. Hilton, L. J. Tuttle, K. L. Bohnert, M. J. Mueller, and D. R. Sinacore, “Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function,” Physical Therapy, vol. 88, no. 11, pp. 1336–1344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Manini, B. C. Clark, M. A. Nalls, B. H. Goodpaster, L. L. Ploutz-Snyder, and T. B. Harris, “Reduced physical activity increases intermuscular adipose tissue in healthy young adults,” American Journal of Clinical Nutrition, vol. 85, no. 2, pp. 377–384, 2007. View at Google Scholar · View at Scopus
  27. R. L. Marcus, O. Addison, L. E. Dibble, K. B. Foreman, G. Morrell, and P. Lastayo, “Intramuscular adipose tissue, sarcopenia and mobility function in older individuals,” Journal of Aging Research, vol. 2012, Article ID 629637, 6 pages, 2012. View at Publisher · View at Google Scholar
  28. A. S. Ryan, A. Buscemi, L. Forrester, C. E. Hafer-Macko, and F. M. Ivey, “Atrophy and intramuscular fat in specific muscles of the thigh: associated weakness and hyperinsulinemia in stroke survivors,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 865–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. Tuttle, D. R. Sinacore, W. T. Cade, and M. J. Mueller, “Lower physical activity is associated with higher intermuscular adipose tissue in people with type 2 diabetes and peripheral neuropathy,” Physical Therapy, vol. 91, no. 6, pp. 923–930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Tuttle, D. R. Sinacore, and M. J. Mueller, “Intermuscular adipose tissue is muscle specific and associated with poor functional performance,” Journal of Aging Research, vol. 2012, Article ID 172957, 2012. View at Publisher · View at Google Scholar
  31. Y. Yoshida, R. L. Marcus, and P. C. Lastayo, “Intramuscular adipose tissue and central activation in older adults,” Muscle & Nerve, vol. 46, no. 5, pp. 813–816, 2012. View at Google Scholar
  32. V. A. Hughes, R. Roubenoff, M. Wood, W. R. Frontera, W. J. Evans, and M. A. Fiatarone Singh, “Anthropometric assessment of 10-y changes in body composition in the elderly,” The American Journal of Clinical Nutrition, vol. 80, no. 2, pp. 475–482, 2004. View at Google Scholar · View at Scopus
  33. C. A. Raguso, U. Kyle, M. P. Kossovsky et al., “A 3-year longitudinal study on body composition changes in the elderly: role of physical exercise,” Clinical Nutrition, vol. 25, no. 4, pp. 573–580, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Miljkovic-Gacic, C. L. Gordon, B. H. Goodpaster et al., “Adipose tissue infiltration in skeletal muscle: age patterns and association with diabetes among men of African ancestry,” American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1590–1595, 2008. View at Google Scholar · View at Scopus
  35. T. Leskinen, S. Sipilä, M. Alen et al., “Leisure-time physical activity and high-risk fat: a longitudinal population-based twin study,” International Journal of Obesity, vol. 33, no. 11, pp. 1211–1218, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Leskinen, S. Sipilä, J. Kaprio, H. Kainulainen, M. Alen, and U. M. Kujala, “Physically active vs. inactive lifestyle, muscle properties, and glucose homeostasis in middle-aged and older twins,” Age, vol. 35, no. 5, pp. 1917–1926, 2013. View at Google Scholar
  37. G. E. Hicks, E. M. Simonsick, T. B. Harris et al., “Trunk muscle composition as a predictor of reduced functional capacity in the health, aging and body composition study: the moderating role of back pain,” Journals of Gerontology A, vol. 60, no. 11, pp. 1420–1424, 2005. View at Google Scholar · View at Scopus
  38. G. E. Hicks, E. M. Simonsick, T. B. Harris et al., “Cross-sectional associations between trunk muscle composition, back pain, and physical function in the health, aging and body composition study,” Journals of Gerontology A, vol. 60, no. 7, pp. 882–887, 2005. View at Google Scholar · View at Scopus
  39. A. S. Gorgey and G. A. Dudley, “Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury,” Spinal Cord, vol. 45, no. 4, pp. 304–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. S. Ryan, C. L. Dobrovolny, G. V. Smith, K. H. Silver, and R. F. Macko, “Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 12, pp. 1703–1707, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology A, vol. 61, no. 10, pp. 1059–1064, 2006. View at Google Scholar · View at Scopus
  42. M. Visser, B. H. Goodpaster, S. B. Kritchevsky et al., “Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons,” Journals of Gerontology A, vol. 60, no. 3, pp. 324–333, 2005. View at Google Scholar · View at Scopus
  43. M. Visser, S. B. Kritchevsky, B. H. Goodpaster et al., “Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition Study,” Journal of the American Geriatrics Society, vol. 50, no. 5, pp. 897–904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Torriani, C. Hadigan, M. E. Jensen, and S. Grinspoon, “Psoas muscle attenuation measurement with computed tomography indicates intramuscular fat accumulation in patients with the HIV-lipodystrophy syndrome,” Journal of Applied Physiology, vol. 95, no. 3, pp. 1005–1010, 2003. View at Google Scholar · View at Scopus
  45. M. Roig, J. J. Eng, D. L. MacIntyre, J. D. Road, and W. D. Reid, “Deficits in muscle strength, mass, quality, and mobility in people with chronic obstructive pulmonary disease,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 31, no. 2, pp. 120–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. D. C. Karampinos, T. Baum, L. Nardo et al., “Characterization of the regional distribution of skeletal muscle adipose tissue in type 2 diabetes using chemical shift-based water/fat separation,” Journal of Magnetic Resonance Imaging, vol. 35, no. 4, pp. 899–907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. P. M. Coen and B. H. Goodpaster, “Role of intramyocelluar lipids in human health,” Trends in Endocrinology and Metabolism, vol. 23, no. 8, pp. 391–398, 2012. View at Google Scholar
  48. M. J. Delmonico, T. B. Harris, M. Visser et al., “Longitudinal study of muscle strength, quality, and adipose tissue infiltration,” American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1579–1585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. B. H. Goodpaster, D. E. Kelley, F. L. Thaete, J. He, and R. Ross, “Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content,” Journal of Applied Physiology, vol. 89, no. 1, pp. 104–110, 2000. View at Google Scholar · View at Scopus
  50. A. S. Ryan and B. J. Nicklas, “Reductions in plasma cytokine levels with weight loss improve insulin sensitivity in overweight and obese postmenopausal women,” Diabetes Care, vol. 27, no. 7, pp. 1699–1705, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. A. S. Ryan, B. J. Nicklas, D. M. Berman, and K. E. Dennis, “Dietary restriction and walking reduce fat deposition in the midthigh in obese older women,” American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 708–713, 2000. View at Google Scholar · View at Scopus
  52. A. S. Ryan, H. K. Ortmeyer, and J. D. Sorkin, “Exercise with calorie restriction improves insulin sensitivity and glycogen synthase activity in obese postmenopausal women with impaired glucose tolerance,” American Journal of Physiology: Endocrinology and Metabolism, vol. 302, no. 1, pp. E145–E152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. D. E. Kelley, B. S. Slasky, and J. Janosky, “Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus,” American Journal of Clinical Nutrition, vol. 54, no. 3, pp. 509–515, 1991. View at Google Scholar · View at Scopus
  54. J. B. Albu, A. J. Kovera, L. Allen et al., “Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women,” American Journal of Clinical Nutrition, vol. 82, no. 6, pp. 1210–1217, 2005. View at Google Scholar · View at Scopus
  55. T. Christiansen, S. K. Paulsen, J. M. Bruun et al., “Comparable reduction of the visceral adipose tissue depot after a diet-induced weight loss with or without aerobic exercise in obese subjects: a 12-week randomized intervention study,” European Journal of Endocrinology, vol. 160, no. 5, pp. 759–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Gerber, A. G. Schneeberger, H. Hoppeler, and D. C. Meyer, “Correlation of atrophy and fatty infiltration on strength and integrity of rotator cuff repairs: a study in thirteen patients,” Journal of Shoulder and Elbow Surgery, vol. 16, no. 6, pp. 691–696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. S. Gorgey and G. A. Dudley, “Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury,” Spinal Cord, vol. 46, no. 2, pp. 96–102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. S. Gorgey, K. J. Mather, H. R. Cupp, and D. R. Gater, “Effects of resistance training on adiposity and metabolism after spinal cord injury,” Medicine and Science in Sports and Exercise, vol. 44, no. 1, pp. 165–174, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Marcus, O. Addison, and P. LaStayo, “Intramuscular adipose tissue attenuates gains in muscle quality in older adults at high risk for falling. A brief report,” The Journal of Nutrition, Health & Aging, vol. 17, no. 3, pp. 215–218, 2013. View at Google Scholar
  60. R. L. Marcus, O. Addison, P. C. LaStayo et al., “Regional muscle glucose uptake remains elevated 1 week after cessation of resistance training independent of altered insulin sensitivity response in older adults with type 2 diabetes,” Journal of Endocrinological Investigation, vol. 36, no. 2, pp. 111–117, 2012. View at Publisher · View at Google Scholar
  61. R. L. Marcus, S. Smith, G. Morrell et al., “Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus,” Physical Therapy, vol. 88, no. 11, pp. 1345–1354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. J. C. Murphy, J. L. McDaniel, K. Mora, D. T. Villareal, L. Fontana, and E. P. Weiss, “Preferential reductions in intermuscular and visceral adipose tissue with exercise-induced weight loss compared with calorie restriction,” Journal of Applied Physiology, vol. 112, no. 1, pp. 79–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. M.-Y. Song, E. Ruts, J. Kim, I. Janumala, S. Heymsfield, and D. Gallagher, “Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 874–880, 2004. View at Google Scholar · View at Scopus
  64. A. P. Wroblewski, F. Amati, M. A. Smiley, B. Goodpaster, and V. Wright, “Chronic exercise preserves lean muscle mass in masters athletes,” The Physician and Sportsmedicine, vol. 39, no. 3, pp. 172–178, 2011. View at Google Scholar · View at Scopus
  65. E. Zoico, A. Rossi, V. Di Francesco et al., “Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level,” Journals of Gerontology A, vol. 65, no. 3, pp. 295–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. P. Wattjes, R. A. Kley, and D. Fischer, “Neuromuscular imaging in inherited muscle diseases,” European Radiology, vol. 20, no. 10, pp. 2447–2460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Mercuri, A. Pichiecchio, J. Allsop, S. Messina, M. Pane, and F. Muntoni, “Muscle MRI in inherited neuromuscular disorders: past, present, and future,” Journal of Magnetic Resonance Imaging, vol. 25, no. 2, pp. 433–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. B. J. Klopfenstein, M. S. Kim, C. M. Krisky et al., “Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans,” The British Journal of Radiology, vol. 85, no. 1018, pp. e826–e830, 2012. View at Publisher · View at Google Scholar
  69. N. Mitsiopoulos, R. N. Baumgartner, S. B. Heymsfield, W. Lyons, D. Gallagher, and R. Ross, “Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography,” Journal of Applied Physiology, vol. 85, no. 1, pp. 115–122, 1998. View at Google Scholar · View at Scopus
  70. M. C. Dubé, D. R. Joanisse, D. Prud'homme et al., “Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type,” International Journal of Obesity, vol. 30, no. 12, pp. 1721–1728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Koster, J. Ding, S. Stenholm et al., “Does the amount of fat mass predict age-related loss of lean mass, muscle strength, and muscle quality in older adults?” Journals of Gerontology A, vol. 66, no. 8, pp. 888–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Chalasani, Z. Younossi, J. E. Lavine et al., “The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association,” Hepatology, vol. 55, no. 6, pp. 2005–2023, 2012. View at Publisher · View at Google Scholar
  73. C. E. Hafer-Macko, S. Yu, A. S. Ryan, F. M. Ivey, and R. F. Macko, “Elevated tumor necrosis factor-α in skeletal muscle after stroke,” Stroke, vol. 36, no. 9, pp. 2021–2023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. D. A. Kallman, C. C. Plato, and J. D. Tobin, “The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives,” Journals of Gerontology, vol. 45, no. 3, pp. M82–M88, 1990. View at Google Scholar · View at Scopus
  75. N. N. Hairi, R. G. Cumming, V. Naganathan et al., “Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the concord health and ageing in men project,” Journal of the American Geriatrics Society, vol. 58, no. 11, pp. 2055–2062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. M. B. Conroy, C. K. Kwoh, E. Krishnan et al., “Muscle strength, mass, and quality in older men and women with knee osteoarthritis,” Arthritis Care and Research, vol. 64, no. 1, pp. 15–21, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Cheema, H. Abas, B. Smith et al., “Investigation of skeletal muscle quantity and quality in end-stage renal disease: original article,” Nephrology, vol. 15, no. 4, pp. 454–463, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. E. Canon and E. M. Crimmins, “Sex differences in the association between muscle quality, inflammatory markers, and cognitive decline,” Journal of Nutrition, Health and Aging, vol. 15, no. 8, pp. 695–698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Daguet, E. Jolivet, V. Bousson et al., “Fat content of hip muscles: an anteroposterior gradient,” Journal of Bone and Joint Surgery A, vol. 93, no. 20, pp. 1897–1905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Kidde, R. Marcus, L. Dibble, S. Smith, and P. Lastayo, “Regional muscle and whole-body composition factors related to mobility in older individuals: a review,” Physiotherapy Canada, vol. 61, no. 4, pp. 197–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Lang, J. A. Cauley, F. Tylavsky, D. Bauer, S. Cummings, and T. B. Harris, “Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study,” Journal of Bone and Mineral Research, vol. 25, no. 3, pp. 513–519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J. H. Kim, S. H. Choi, S. Lim et al., “Thigh muscle attenuation measured by computed tomography was associated with the risk of low bone density in community-dwelling elderly population,” Clinical Endocrinology, vol. 78, no. 4, pp. 512–517, 2012. View at Publisher · View at Google Scholar
  83. L. A. Schaap, S. M. F. Pluijm, D. J. H. Deeg et al., “Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength,” Journals of Gerontology A, vol. 64, no. 11, pp. 1183–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. L. A. Schaap, S. M. F. Pluijm, D. J. H. Deeg, and M. Visser, “Inflammatory markers and loss of muscle mass (Sarcopenia) and strength,” American Journal of Medicine, vol. 119, no. 6, pp. 526–e17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. L. Ferrucci, B. W. J. H. Penninx, S. Volpato et al., “Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels,” Journal of the American Geriatrics Society, vol. 50, no. 12, pp. 1947–1954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. B. W. J. H. Penninx, S. B. Kritchevsky, A. B. Newman et al., “Inflammatory markers and incident mobility limitation in the elderly,” Journal of the American Geriatrics Society, vol. 52, no. 7, pp. 1105–1113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Visser, M. Pahor, D. R. Taaffe et al., “Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: the health ABC study,” Journals of Gerontology A, vol. 57, no. 5, pp. M326–M332, 2002. View at Google Scholar · View at Scopus
  88. O. Hersche and C. Gerber, “Passive tension in the supraspinatus musculotendinous unit after long-standing rupture of its tendon: a preliminary report,” Journal of Shoulder and Elbow Surgery, vol. 7, no. 4, pp. 393–396, 1998. View at Google Scholar · View at Scopus
  89. D. C. Meyer, H. Hoppeler, B. von Rechenberg, and C. Gerber, “A pathomechanical concept explains muscle loss and fatty muscular changes following surgical tendon release,” Journal of Orthopaedic Research, vol. 22, no. 5, pp. 1004–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. R. L. Marcus, O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo, “Skeletal muscle fat infiltration: impact of age, inactivity, and exercise,” Journal of Nutrition, Health and Aging, vol. 14, no. 5, pp. 362–366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. A. S. Ryan, B. J. Nicklas, and D. M. Berman, “Aerobic exercise is necessary to improve glucose utilization with moderate weight loss in women,” Obesity, vol. 14, no. 6, pp. 1064–1072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. B. H. Goodpaster, D. E. Kelley, R. R. Wing, A. Meier, and F. L. Thaete, “Effects of weight loss on regional fat distribution and insulin sensitivity in obesity,” Diabetes, vol. 48, no. 4, pp. 839–847, 1999. View at Google Scholar · View at Scopus
  93. A. J. Santanasto, N. W. Glynn, M. A. Newman et al., “Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial,” Journal of Obesity, vol. 2011, Article ID 516576, 10 pages, 2011. View at Publisher · View at Google Scholar
  94. D. R. Taaffe, T. R. Henwood, M. A. Nalls, D. G. Walker, T. F. Lang, and T. B. Harris, “Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults,” Gerontology, vol. 55, no. 2, pp. 217–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. H. Ku, K. A. Han, H. Ahn et al., “Resistance exercise did not alter intramuscular adipose tissue but reduced retinol-binding protein-4 concentration in individuals with type 2 diabetes mellitus,” The Journal of International Medical Research, vol. 38, no. 3, pp. 782–791, 2010. View at Google Scholar · View at Scopus
  96. S. Lee, J. L. Kuk, L. E. Davidson et al., “Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes,” Journal of Applied Physiology, vol. 99, no. 3, pp. 1220–1225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. J. J. Avila, J. A. Gutierres, M. E. Sheehy, I. E. Lofgren, and M. J. Delmonico, “Effect of moderate intensity resistance training during weight loss on body composition and physical performance in overweight older adults,” European Journal of Applied Physiology, vol. 109, no. 3, pp. 517–525, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Y. Jung, K. A. Han, H. J. Ahn et al., “Effects of aerobic exercise intensity on abdominal and thigh adipose tissue and skeletal muscle attenuation in overweight women with type 2 diabetes mellitus,” Diabetes & Metabolism Journal, vol. 36, no. 3, pp. 211–221, 2012. View at Publisher · View at Google Scholar
  99. G. Mazzali, V. Di Francesco, E. Zoico et al., “Interrelations between fat distribution, muscle lipid content, adipocytokines, and insulin resistance: effect of moderate weight loss in older women,” American Journal of Clinical Nutrition, vol. 84, no. 5, pp. 1193–1199, 2006. View at Google Scholar · View at Scopus
  100. C. T. Walts, E. D. Hanson, M. J. Delmonico, L. Yao, M. Q. Wang, and B. F. Hurley, “Do sex or race differences influence strength training effects on muscle or fat?” Medicine and Science in Sports and Exercise, vol. 40, no. 4, pp. 669–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. A. S. Ryan, F. M. Ivey, S. Prior, G. Li, and C. Hafer-Macko, “Skeletal muscle hypertrophy and muscle myostatin reduction after resistive training in stroke survivors,” Stroke, vol. 42, no. 2, pp. 416–420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Vettor, G. Milan, C. Franzin et al., “The origin of intermuscular adipose tissue and its pathophysiological implications,” American Journal of Physiology: Endocrinology and Metabolism, vol. 297, no. 5, pp. E987–E998, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Uezumi, S.-I. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, “Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle,” Nature Cell Biology, vol. 12, no. 2, pp. 143–152, 2010. View at Publisher · View at Google Scholar · View at Scopus