Table of Contents Author Guidelines Submit a Manuscript
International Journal of Endocrinology
Volume 2014 (2014), Article ID 816430, 11 pages
http://dx.doi.org/10.1155/2014/816430
Review Article

A New Aurora in Anaplastic Thyroid Cancer Therapy

Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy

Received 15 April 2014; Accepted 11 June 2014; Published 1 July 2014

Academic Editor: Giuliana Salvatore

Copyright © 2014 Enke Baldini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. M. Chan and D. Botstein, “Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast,” Genetics, vol. 135, no. 3, pp. 677–691, 1993. View at Google Scholar · View at Scopus
  2. D. M. Glover, M. H. Leibowitz, D. A. McLean, and H. Parry, “Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles,” Cell, vol. 81, no. 1, pp. 95–105, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Schumacher, N. Ashcroft, P. J. Donovan, and A. Golden, “A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos,” Development, vol. 125, no. 22, pp. 4391–4402, 1998. View at Google Scholar · View at Scopus
  4. J. M. Schumacher, A. Golden, and P. J. Donovan, “AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos,” Journal of Cell Biology, vol. 143, no. 6, pp. 1635–1646, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. J. R. Bischoff and G. D. Plowman, “The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis,” Trends in Cell Biology, vol. 9, no. 11, pp. 454–459, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tanaka, A. Ueda, H. Kanamori et al., “Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1,” The Journal of Biological Chemistry, vol. 277, no. 12, pp. 10719–10726, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Zwicker, F. C. Lucibello, L. A. Wolfraim et al., “Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression,” The EMBO Journal, vol. 14, no. 18, pp. 4514–4522, 1995. View at Google Scholar · View at Scopus
  8. T. Uchiumi, D. L. Longo, and D. K. Ferris, “Cell cycle regulation of the human polo-like kinase (PLK) promoter,” Journal of Biological Chemistry, vol. 272, no. 14, pp. 9166–9174, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. R. D. Fontijn, B. Goud, A. Echard et al., “The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis,” Molecular and Cellular Biology, vol. 21, no. 8, pp. 2944–2955, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Nikulenkov, C. Spinnler, H. Li et al., “Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis,” Cell Death and Differentiation, vol. 19, no. 2, pp. 1992–2002, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Fanale, V. Bazan, L. R. Corsini et al., “HIF-1 is involved in the negative regulation of AURKA expression in breast cancer cell lines under hypoxic conditions,” Breast Cancer Research and Treatment, vol. 140, no. 3, pp. 505–517, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Lee, V. Cimica, N. Ramachandra, D. Zagzag, and G. V. Kalpana, “Aurora A is a repressed effector target of the chromatin remodeling protein INI1/hSNF5 required for rhabdoid tumor cell survival,” Cancer Research, vol. 71, no. 9, pp. 3225–3235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Latha, M. Li, V. Chumbalkar et al., “Nuclear EGFRvIII-STAT5b complex contributes to glioblastoma cell survival by direct activation of the Bcl-XL promoter,” International Journal of Cancer, vol. 132, no. 3, pp. 509–520, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. D. M. Murphy, P. G. Buckley, S. Das, K. M. Watters, K. Bryan, and R. L. Stallings, “Co-localization of the oncogenic transcription factor MYCN and the DNA methyl binding protein MeCP2 at genomic sites in neuroblastoma,” PLoS ONE, vol. 6, no. 6, Article ID e21436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Wakahara, T. Ohno, M. Kimura et al., “EWS-Fli1 up-regulates expression of the Aurora A and Aurora B kinases,” Molecular Cancer Research, vol. 6, no. 12, pp. 1937–1945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Furukawa, N. Kanai, H. O. Shiwaku, N. Soga, A. Uehara, and A. Horii, “AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer,” Oncogene, vol. 25, no. 35, pp. 4831–4839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Marumoto, D. Zhang, and H. Saya, “Aurora-A—a guardian of poles,” Nature Reviews Cancer, vol. 5, no. 1, pp. 42–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. V. M. Bolanos-Garcia, “Aurora kinases,” The International Journal of Biochemistry & Cell Biology, vol. 37, no. 8, pp. 1572–1577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Carmena and W. C. Earnshaw, “The cellular geography of Aurora kinases,” Nature Reviews Molecular Cell Biology, vol. 4, no. 11, pp. 842–854, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Arlot-Bonnemains, A. Klotzbucher, R. Giet, R. Uzbekov, R. Bihan, and C. Prigent, “Identification of a functional destruction box in the Xenopus laevis aurora-A kinase pEg2,” FEBS Letters, vol. 508, no. 1, pp. 149–152, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Castro, Y. Arlot-Bonnemains, S. Vigneron, J. C. Labbé, C. Prigent, and T. Lorca, “APC/Fizzy-related targets Aurora—a kinase for proteolysis,” EMBO Reports, vol. 3, no. 5, pp. 457–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. A. S. Nikonova, I. Astsaturov, I. G. Serebriiskii, R. L. Dunbrack Jr., and E. A. Golemis, “Aurora A kinase (AURKA) in normal and pathological cell division,” Cellular and Molecular Life Sciences, vol. 70, no. 4, pp. 661–687, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kimura, C. Uchida, Y. Takano, M. Kitagawa, and Y. Okano, “Cell cycle-dependent regulation of the human aurora B promoter,” Biochemical and Biophysical Research Communications, vol. 316, no. 3, pp. 930–936, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Shu, S. Guo, Y. Dang et al., “Human Aurora-B binds to a proteasome α-subunit HC8 and undergoes degradation in a proteasome-dependent manner,” Molecular and Cellular Biochemistry, vol. 254, no. 1-2, pp. 157–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Tsou, K. Chang, P. Chang-Liao et al., “Aberrantly expressed AURKC enhances the transformation and tumourigenicity of epithelial cells,” Journal of Pathology, vol. 225, no. 2, pp. 243–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Baldini, S. Sorrenti, E. D'Armiento et al., “Aurora kinases: new molecular targets in thyroid cancer therapy,” Clinica Terapeutica, vol. 163, no. 6, pp. e457–e462, 2012. View at Google Scholar · View at Scopus
  27. V. Joukov, A. De Nicolo, A. Rodriguez, J. C. Walter, and D. M. Livingston, “Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 49, pp. 21022–21027, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Berdnik and J. A. Knoblich, “Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis,” Current Biology, vol. 12, no. 8, pp. 640–647, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. C. P. C. De Souza, K. A. O. Ellem, and B. G. Gabrielli, “Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events,” Experimental Cell Research, vol. 257, no. 1, pp. 11–21, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Seki, J. A. Coppinger, C. Jang, J. R. Yates III, and G. Fang, “Bora and the kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic entry,” Science, vol. 320, no. 5883, pp. 1655–1658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Dutertre, M. Cazales, M. Quaranta et al., “Phosphorylation of CDC25B by Aurora—a at the centrosome contributes to the G2-M transition,” Journal of Cell Science, vol. 117, part 12, pp. 2523–2531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. R. D. Van Horn, S. Chu, L. Fan et al., “Cdk1 activity is required for mitotic activation of Aurora A during G2/M transition of human cells,” The Journal of Biological Chemistry, vol. 285, no. 28, pp. 21849–21857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Ulisse, E. Baldini, M. Toller et al., “Transforming acidic coiled-coil 3 and Aurora-A interact in human thyrocytes and their expression is deregulated in thyroid cancer tissues,” Endocrine-Related Cancer, vol. 14, no. 3, pp. 827–837, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Kinoshita, T. L. Noetzel, L. Pelletier et al., “Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis,” The Journal of Cell Biology, vol. 170, no. 7, pp. 1047–1055, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. P. Barros, K. Kinoshita, A. A. Hyman, and J. W. Raff, “Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules,” Journal of Cell Biology, vol. 170, no. 7, pp. 1039–1046, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ruchaud, M. Carmena, and W. C. Earnshaw, “Chromosomal passengers: conducting cell division,” Nature Reviews Molecular Cell Biology, vol. 8, no. 10, pp. 798–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Vader, R. H. Medema, and S. M. A. Lens, “The chromosomal passenger complex: guiding Aurora-B through mitosis,” The Journal of Cell Biology, vol. 173, no. 6, pp. 833–837, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. S. van der Waal, R. C. C. Hengeveld, A. van der Horst, and S. M. A. Lens, “Cell division control by the Chromosomal Passenger Complex,” Experimental Cell Research, vol. 318, no. 12, pp. 1407–1420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Sasai, H. Katayama, D. L. Stenoien et al., “Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells,” Cell Motility and the Cytoskeleton, vol. 59, no. 4, pp. 249–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. S. D. Slattery, M. A. Mancini, B. R. Brinkley, and R. M. Hall, “Aurora-C kinase supports mitotic progression in the absence of Aurora-B,” Cell Cycle, vol. 8, no. 18, pp. 2984–2994, 2009. View at Google Scholar · View at Scopus
  41. J. C. Gabillard, S. Ulisse, E. Baldini et al., “Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein,” Biochemical and Biophysical Research Communications, vol. 408, no. 4, pp. 647–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Conte, E. Charafe-Jauffret, B. Delaval et al., “Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators,” Oncogene, vol. 21, no. 36, pp. 5619–5630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Spengler, “The protein kinase Aurora-C phosphorylates TRF2,” Cell Cycle, vol. 6, no. 20, pp. 2579–2580, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. D. J. Gordon, B. Resio, and D. Pellman, “Causes and consequences of aneuploidy in cancer,” Nature Reviews Genetics, vol. 13, no. 3, pp. 189–203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. J. R. Bischoff, L. Anderson, Y. Zhu et al., “A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers,” The EMBO Journal, vol. 17, no. 11, pp. 3052–3065, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Ota, S. Suto, H. Katayama et al., “Increased mitotic phosphorylation of histone H3 attributable to AIM-1/aurora-B overexpression contributes to chromosome number instability,” Cancer Research, vol. 62, no. 18, pp. 5168–5177, 2002. View at Google Scholar · View at Scopus
  48. J. Khan, F. Ezan, J. Crémet et al., “Overexpression of active Aurora-C kinase results in cell transformation and tumour formation,” PLoS ONE, vol. 6, no. 10, Article ID e26512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Tatsuka, S. Sato, S. Kitajima et al., “Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis,” Oncogene, vol. 24, no. 6, pp. 1122–1127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Kanda, H. Kawai, S. Suto et al., “Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation,” Oncogene, vol. 24, no. 49, pp. 7266–7272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. A. Dar, L. W. Goff, S. Majid, J. Berlin, and W. El-Rifai, “Aurora kinase inhibitors—rising stars in cancer therapeutics?” Molecular Cancer Therapeutics, vol. 9, no. 2, pp. 268–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Lok, R. Q. Klein, and M. W. Saif, “Aurora kinase inhibitors as anti-cancer therapy,” Anti-Cancer Drugs, vol. 21, no. 4, pp. 339–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Anand, S. Penrhyn-Lowe, and A. R. Venkitaraman, “AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol,” Cancer Cell, vol. 3, no. 1, pp. 51–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Liang, D. Wang, Y. Wang, Z. Zhou, J. Zhang, and J. Li, “Expression of Aurora Kinase A and B in chondrosarcoma and its relationship with the prognosis,” Diagnostic Pathology, vol. 7, no. 1, article 84, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. G. Liu, W. Yi, Y. L. Tao, H. C. Chan, M. Zeng, and Y. Xia, “Aurora-A is an efficient marker for predicting poor prognosis in human nasopharyngeal carcinoma with aggressive local invasion: 208 cases with a 10-year follow-up from a single institution,” Oncology Letters, vol. 3, no. 6, pp. 1237–1244, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. H. R. Ali, S.-J. Dawson, F. M. Blows, E. Provenzano, P. D. Pharoah, and C. Caldas, “Aurora kinase A outperforms Ki67 as a prognostic marker in ER-positive breast cancer,” British Journal of Cancer, vol. 106, no. 11, pp. 1798–1806, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. N. L. Lehman, J. P. O'Donnell, L. J. Whiteley et al., “Aurora A is differentially expressed in gliomas, is associated with patient survival in glioblastoma, and is a potential chemotherapeutic target in gliomas,” Cell Cycle, vol. 11, no. 3, pp. 489–502, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Dotan, N. J. Meropol, F. Zhu et al., “Relationship of increased aurora kinase A gene copy number, prognosis and response to chemotherapy in patients with metastatic colorectal cancer,” British Journal of Cancer, vol. 106, no. 4, pp. 748–755, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Wang, S. Yang, H. Zhang et al., “Aurora-A as an independent molecular prognostic marker in gastric cancer,” Oncology Reports, vol. 26, no. 1, pp. 23–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Yang, X. Guo, G. Yang, D. G. Rosen, and J. Liu, “AURKA and BRCA2 expression highly correlate with prognosis of endometrioid ovarian carcinoma,” Modern Pathology, vol. 24, no. 6, pp. 836–845, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. R. A. Bibby, C. Tang, A. Faisal et al., “A cancer-associated Aurora A mutant is mislocalized and misregulated due to loss of interaction with TPX2,” The Journal of Biological Chemistry, vol. 284, no. 48, pp. 33177–33184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. K. B. Lukasiewicz and W. L. Lingle, “Aurora A, centrosome structure, and the centrosome cycle,” Environmental and Molecular Mutagenesis, vol. 50, no. 8, pp. 602–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. H. G. Nguyen, M. Makitalo, D. Yang, D. Chinnappan, C. St. Hilaire, and K. Ravid, “Deregulated Aurora-B induced tetraploidy promotes tumorigenesis,” The FASEB Journal, vol. 23, no. 8, pp. 2741–2748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Pannone, S. A. H. Hindi, A. Santoro et al., “Aurora B expression as a prognostic indicator and possibile therapeutic target in oral squamous cell carcinoma,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 1, pp. 79–88, 2011. View at Google Scholar · View at Scopus
  65. Z. Lin, Y. Jeng, F. Hu et al., “Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC,” BMC Cancer, vol. 10, article 461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Kimura, Y. Matsuda, T. Yoshioka, and Y. Okano, “Cell cycle-dependent expression and centrosome localization of a third human Aurora/Ipl1-related protein kinase, AIK3,” The Journal of Biological Chemistry, vol. 274, no. 11, pp. 7334–7340, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Ulisse, J. Delcros, E. Baldini et al., “Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues,” International Journal of Cancer, vol. 119, no. 2, pp. 275–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Baldini, Y. Arlot-Bonnemains, M. Mottolese et al., “Deregulation of Aurora kinase gene expression in human testicular germ cell tumours,” Andrologia, vol. 42, no. 4, pp. 260–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Baldini, Y. Arlot-Bonnemains, S. Sorrenti et al., “Aurora kinases are expressed in medullary thyroid carcinoma (MTC) and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT,” BMC Cancer, vol. 11, article 411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Manchado, M. Guillamot, and M. Malumbres, “Killing cells by targeting mitosis,” Cell Death and Differentiation, vol. 19, no. 3, pp. 369–377, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. C. H. A. Cheung, M. S. Coumar, J. Y. Chang, and H. P. Hsieh, “Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10),” Expert Opinion on Therapeutic Patents, vol. 21, no. 6, pp. 857–884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Karthigeyan, S. B. B. Prasad, J. Shandilya, S. Agrawal, and T. K. Kundu, “Biology of Aurora A kinase: implications in cancer manifestation and therapy,” Medicinal Research Reviews, vol. 31, no. 5, pp. 757–793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Matthews, C. Visintin, B. Hartzoulakis, A. Jarvis, and D. L. Selwood, “Aurora A and B kinases as targets for cancer: will they be selective for tumors?” Expert Review of Anticancer Therapy, vol. 6, no. 1, pp. 109–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Kollareddy, D. Zheleva, P. Dzubak, P. S. Brahmkshatriya, M. Lepsik, and M. Hajduch, “Aurora kinase inhibitors: progress towards the clinic,” Investigational New Drugs, vol. 30, no. 6, pp. 2411–2432, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Lapenna and A. Giordano, “Cell cycle kinases as therapeutic targets for cancer,” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 547–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. D. S. Boss, J. H. Beijnen, and J. H. M. Schellens, “Clinical experience with Aurora kinase inhibitors: a review,” Oncologist, vol. 14, no. 8, pp. 780–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. J. E. M. Kitzen, M. J. A. de Jonge, and J. Verweij, “Aurora kinase inhibitors,” Critical Reviews in Oncology/Hematology, vol. 73, no. 2, pp. 99–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. I. Sherman, “Thyroid carcinoma,” The Lancet, vol. 361, no. 9356, pp. 501–511, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Trimboli, S. Ulisse, F. M. Graziano et al., “Trend in thyroid carcinoma size, age at diagnosis, and histology in a retrospective study of 500 cases diagnosed over 20 years,” Thyroid, vol. 16, no. 11, pp. 1151–1155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. N. K. Patel and A. R. Shaha, “Poorly differentiated thyroid cancer,” Current Opinion in Otolaryngology & Head & Neck Surgery, vol. 22, no. 2, pp. 121–126, 2014. View at Publisher · View at Google Scholar
  82. J. L. Pasieka, “Anaplastic thyroid cancer,” Current Opinion in Oncology, vol. 15, no. 1, pp. 78–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. E. Nikiforov, Diagnostic Pathology and Molecular Genetics of the Thyroid, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2009.
  84. Y. E. Nikiforov and M. N. Nikiforova, “Molecular genetics and diagnosis of thyroid cancer,” Nature Reviews Endocrinology, vol. 7, no. 10, pp. 569–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Guerra, V. di Crescenzo, and A. Garzi, “Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review,” BMC Surgery, vol. 13, no. 2, article S44, 2013. View at Google Scholar
  86. M. A. Huber, N. Kraut, and H. Beug, “Molecular requirements for epithelial-mesenchymal transition during tumor progression,” Current Opinion in Cell Biology, vol. 17, no. 5, pp. 548–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. V. Vasko, A. V. Espinosa, W. Scouten et al., “Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2803–2808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. E. Baldini, M. Toller, F. M. Graziano et al., “Expression of matrix metalloproteinases and their specific inhibitors in normal and different human thyroid tumor cell lines,” Thyroid, vol. 14, no. 11, pp. 881–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Ulisse, E. Baldini, M. Toller et al., “Differential expression of the components of the plasminogen activating system in human thyroid tumour derived cell lines and papillary carcinomas,” European Journal of Cancer, vol. 42, no. 15, pp. 2631–2638, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Ulisse, E. Baldini, S. Sorrenti et al., “High expression of the urokinase plasminogen activator and its cognate receptor associates with advanced stages and reduced disease-free interval in papillary thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 2, pp. 504–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Ulisse, E. Baldini, S. Sorrenti et al., “In papillary thyroid carcinoma BRAFV600E is associated with increased expression of the urokinase plasminogen activator and its cognate receptor, but not with disease-free interval,” Clinical Endocrinology, vol. 77, no. 5, pp. 780–786, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Shahedian, Y. Shi, M. Zou, and N. R. Farid, “Thyroid carcinoma is characterized by genomic instability: evidence from p53 mutations,” Molecular Genetics and Metabolism, vol. 72, no. 2, pp. 155–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. V. B. Wreesmann, R. A. Ghossein, S. G. Patel et al., “Genome-wide appraisal of thyroid cancer progression,” American Journal of Pathology, vol. 161, no. 5, pp. 1549–1556, 2002. View at Publisher · View at Google Scholar · View at Scopus
  94. K. N. Patel and A. R. Shaha, “Poorly differentiated and anaplastic thyroid cancer,” Cancer Control, vol. 13, no. 2, pp. 119–128, 2006. View at Google Scholar · View at Scopus
  95. C. Passler, C. Scheuba, G. Prager et al., “Prognostic factors of papillary and follicular thyroid cancer: differences in an iodine-replete endemic goiter region,” Endocrine-Related Cancer, vol. 11, no. 1, pp. 131–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. C. F. A. Eustatia-Rutten, E. P. M. Corssmit, N. R. Biermasz, A. M. Pereira, J. A. Romijn, and J. W. Smit, “Survival and death causes in differentiated thyroid carcinoma,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 1, pp. 313–319, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Antonelli, P. Fallahi, S. Ulisse et al., “New targeted therapies for anaplastic thyroid cancer,” Anti-Cancer Agents in Medicinal Chemistry, vol. 12, no. 1, pp. 87–93, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Sorrentino, S. Libertini, P. L. Pallante et al., “Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 928–935, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. S. M. Wiseman, H. Masoudi, P. Niblock et al., “Anaplastic thyroid carcinoma: Expression profile of targets for therapy offers new insights for disease treatment,” Annals of Surgical Oncology, vol. 14, no. 2, pp. 719–729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. R. F. Rodrigues, L. Roque, J. Rosa-Santos, O. Cid, and J. Soares, “Chromosomal imbalances associated with anaplastic transformation of follicular thyroid carcinomas,” British Journal of Cancer, vol. 90, no. 2, pp. 492–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Libertini, A. Abagnale, C. Passaro et al., “AZD1152 negatively affects the growth of anaplastic thyroid carcinoma cells and enhances the effects of oncolytic virus dl922-947,” Endocrine-Related Cancer, vol. 18, no. 1, pp. 129–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Arlot-Bonnemains, E. Baldini, B. Martin et al., “Effects of the Aurora kinase inhibitor VX-680 on anaplastic thyroid cancer-derived cell lines,” Endocrine-Related Cancer, vol. 15, no. 2, pp. 559–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Baldini, S. Sorrenti, E. D'Armiento et al., “Effects of the Aurora kinases pan-inhibitor SNS-314 mesylate on anaplastic thyroid cancer derived cell lines,” Clinica Terapeutica, vol. 163, no. 5, pp. e307–e313, 2012. View at Google Scholar · View at Scopus
  104. E. Baldini, C. Tuccilli, N. Prinzi et al., “The dual Aurora kinase inhibitor ZM447439 prevents anaplastic thyroid cancer cell growth and tumorigenicity,” Journal of Biological Regulators and Homeostatic Agents, vol. 27, no. 3, pp. 705–715, 2013. View at Google Scholar
  105. A. Wunderlich, M. Fischer, T. Schloßhauer et al., “Evaluation of Aurora kinase inhibition as a new therapeutic strategy in anaplastic and poorly differentiated follicular thyroid cancer,” Cancer Science, vol. 102, no. 4, pp. 762–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Wunderlich, S. Roth, A. Ramaswamy et al., “Combined inhibition of cellular pathways as a future therapeutic option in fatal anaplastic thyroid cancer,” Endocrine, vol. 42, no. 3, pp. 637–646, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. K. C. Bible, V. J. Suman, J. R. Molina et al., “Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study,” The Lancet Oncology, vol. 11, no. 10, pp. 962–972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. K. C. Bible, V. J. Suman, M. E. Menefee et al., “A multiinstitutional phase 2 trial of pazopanib monotherapy in advanced anaplastic thyroid cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 9, pp. 3179–3184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. C. R. Isham, A. R. Bossou, V. Negron et al., “Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer,” Science Translational Medicine, vol. 5, no. 166, p. 166ra3, 2013. View at Publisher · View at Google Scholar · View at Scopus