Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2011, Article ID 697698, 8 pages
http://dx.doi.org/10.4061/2011/697698
Research Article

Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor

1Department of Physical Chemistry, Plovdiv University, 24 Tsar Assen Street, 4000 Plovdiv, Bulgaria
2Department of Inorganic and Physical Chemistry, University of Food Technology, 26 Maritsa Boulevard, 4002 Plovdiv, Bulgaria

Received 29 March 2011; Accepted 17 May 2011

Academic Editor: Newton Pimenta Neves Jr.

Copyright © 2011 Elena Horozova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. A. Rahman, M. S. Won, and Y. B. Shim, “Xanthine sensors based on anodic and cathodic detection of enzymatically generated hydrogen peroxide,” Electroanalysis, vol. 19, no. 6, pp. 631–637, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. X. C. Tan, Y. X. Tian, P. X. Cai, and X. Y. Zou, “Glucose biosensor based on glucose oxidase immobilized in sol-gel chitosan/silica hybrid composite film on Prussian blue modified glass carbon electrode,” Analytical and Bioanalytical Chemistry, vol. 381, no. 2, pp. 500–507, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Nakatani, L. Santos, C. Pelegrine et al., “Biosensor based on xanthine oxidase for monitoring hypoxanthine in fish meat,” American Journal of Biochemistry and Biotechnology, vol. 1, pp. 85–89, 2005. View at Google Scholar
  4. A. Arvinte, L. Rotariu, and C. Bala, “Development of a pesticides biosensor using carbon-based electrode systems,” in Chemicals as Intentional and Accidental Global Environmental Threats, L. Simeonov and E. Chirila, Eds., pp. 337–343, Springer, The Netherlands, 2006. View at Google Scholar
  5. N. Dimcheva, E. Horozova, and Z. Jordanova, “A glucose oxidase immobilized electrode based on modified graphite,” Zeitschrift fur Naturforschung, vol. 57, no. 7-8, pp. 705–711, 2002. View at Google Scholar · View at Scopus
  6. P. J. Kulesza, R. Marassi, K. Karnicka et al., “Electrocatalysis and bioelectrocatalysis and nanostructured composite films,” Reviews on Advanced Materials Science, vol. 15, no. 3, pp. 225–233, 2007. View at Google Scholar · View at Scopus
  7. L. Sun, D. Cao, and G. Wang, “Pd-Ru/C as the electrocatalyst for hydrogen peroxide reduction,” Journal of Applied Electrochemistry, vol. 38, no. 10, pp. 1415–1419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Taha and J. Wang, “Electrocatalysis and flow detection at a glassy carbon electrode modified with a thin film of oxymanganese species,” Electroanalysis, vol. 3, pp. 215–219, 1991. View at Google Scholar
  9. E. Horozova, T. Dodevska, and N. Dimcheva, “Modified graphites: application to the development of enzyme-based amperometric biosensors,” Bioelectrochemistry, vol. 74, no. 2, pp. 260–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Dodevska, E. Horozova, and N. Dimcheva, “Electrocatalytic reduction of hydrogen peroxide on modified graphite electrodes: application to the development of glucose biosensors,” Analytical and Bioanalytical Chemistry, vol. 386, no. 5, pp. 1413–1418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Welch, C. E. Banks, A. O. Simm, and R. G. Compton, “Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide,” Analytical and Bioanalytical Chemistry, vol. 382, no. 1, pp. 12–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Horozova, Z. Jordanova, and A. Angelacheva, “The effect of the nature of the electrode material on the oxidation rates of hydrogen peroxide, ascorbic acid, uric acid and gloutathione,” Bulletin of Electrochemistry, vol. 13, no. 7, pp. 321–326, 1997. View at Google Scholar · View at Scopus
  13. R. L. R. P. Fagury, K. O. Lupetti, and O. Fatibello-Filho, “Flexible potentiometric minisensor based on manganese dioxide-composite for the determination of hydrogen peroxide in bleach and pharmaceutical products,” Analytical Letters, vol. 38, no. 12, pp. 1857–1867, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. S. Kumar and S. Sornambikai, “Selective amperometric sensing of hydrogen peroxide with nafionlcopper particulates chemically modified electrode,” Indian Journal of Chemistry Section A, vol. 48, no. 7, pp. 940–945, 2009. View at Google Scholar · View at Scopus
  15. H. Ryoo, Y. Kim, J. Lee, W. Shin, N. Myung, and H. G. Hong, “Immobilization of horseradish peroxidase to electrochemically deposited gold-nanoparticles on glassy carbon electrode for determination of H2O2,” Bulletin of the Korean Chemical Society, vol. 27, no. 5, pp. 672–678, 2006. View at Google Scholar · View at Scopus
  16. L. Duan, Q. Xu, F. Xie, and S. Wang, “Hydrogen peroxide biosensor based on the bioelectrocatalysis of myoglobin incorporated in multi-walled carbon nanotubes/chitosan composite film,” International Journal of Electrochemcal Science, vol. 3, pp. 118–124, 2008. View at Google Scholar
  17. A. Ernst, O. Makowski, B. Kowalewska, K. Miecznikowski, and P. J. Kulesza, “Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic-inorganic film of structured Prussian Blue and PEDOT,” Bioelectrochemistry, vol. 71, no. 1, pp. 23–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Varma and C. K. Mitra, “Bioelectrochemical studies on catalase modified glassy carbon paste electrodes,” Electrochemistry Communications, vol. 4, no. 2, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. V. M. Ivama and S. H. P. Serrano, “Rhodium-prussian blue modified carbon paste electrode (Rh-PBMCPE) for amperometric detection of hydrogen peroxide,” Journal of the Brazilian Chemical Society, vol. 14, no. 4, pp. 551–555, 2003. View at Google Scholar · View at Scopus
  20. K. Schachl, H. Alemu, K. Kalecher, J. Ježkova, I. Švancara, and K. Vytras, “Amperometric determination of hydrogen peroxide with a manganese dioxide-modified carbon paste electrode using flow injection analysis,” Analyst, vol. 122, pp. 985–989, 1997. View at Google Scholar
  21. S. Arjsiriwat, M. Tanticharoen, K. Kirtikara, K. Aoki, and M. Somasundrum, “Metal-dispersed conducting polymer-coated electrode used for oxidase-based biosensors,” Electrochemistry Communications, vol. 2, no. 6, pp. 441–444, 2000. View at Publisher · View at Google Scholar
  22. K. Balasubramanian and M. Burghard, “Biosensors based on carbon nanotubes,” Analytical and Bioanalytical Chemistry, vol. 385, no. 3, pp. 452–468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Yang, W. Wei, C. Tao, B. Xie, and X. Chen, “Nano-silver/multi-walled carbon nanotube composite films for hydrogen peroxide electroanalysis,” Microchimica Acta, vol. 162, no. 1-2, pp. 51–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, “Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors,” Biosensors and Bioelectronics, vol. 21, no. 7, pp. 1125–1131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Garjonyte and A. Malinauskas, “Amperometric sensor for hydrogen peroxide, based on Cu2O or CuO modified carbon paste electrodes,” Fresenius' Journal of Analytical Chemistry, vol. 360, no. 1, pp. 122–123, 1998. View at Google Scholar · View at Scopus
  26. O. Niwa, “Electroanalytical chemistry with carbon film electrodes and micro and nano-structured carbon film-based electrodes,” Bulletin of the Chemical Society of Japan, vol. 78, no. 4, pp. 555–571, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Oyama, T. Okajima, and T. Ohsaka, “Electrodeposition of gold at glassy carbon electrodes in room-temperature ionic liquids,” Journal of the Electrochemical Society, vol. 154, no. 6, pp. D322–D327, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Alvarez and R. Salinas, “Electrochemically deposited Pd nanocrystals on vitreous carbon,” in Proceedings of the 2nd Mercosur Congress on Process Systems Engineering, Rio de Janeiro, Brasil, 2005.
  29. P. J. F. Harris, “Fullerene-related structure of commercial glassy carbons,” Philosophical Magazine, vol. 84, no. 29, pp. 3159–3167, 2004. View at Publisher · View at Google Scholar · View at Scopus