Table of Contents Author Guidelines Submit a Manuscript
International Journal of Electrochemistry
Volume 2012, Article ID 267893, 9 pages
http://dx.doi.org/10.1155/2012/267893
Research Article

Influence of Synthesis pH on Textural Properties of Carbon Xerogels as Supports for Pt/CXs Catalysts for Direct Methanol Fuel Cells

Instituto de Carboquímica (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain

Received 1 May 2011; Revised 4 September 2011; Accepted 19 September 2011

Academic Editor: Elena Pastor Tejera

Copyright © 2012 C. Alegre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wasmus and A. Küver, “Methanol oxidation and direct methanol fuel cells: a selective review,” Journal of Electroanalytical Chemistry, vol. 461, no. 1-2, pp. 14–31, 1999. View at Google Scholar · View at Scopus
  2. J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, “Structure and activity of carbon-supported Pt-Co electrocatalysts for oxygen reduction,” Journal of Physical Chemistry B, vol. 108, no. 46, pp. 17767–17774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Teliz, V. Díaz, R. Faccio, A. W. Mombru, and F. Zinola, “The electrochemical development of Pt(111)stepped surfaces and its influence on methanol electrooxidation,” International Journal of Electrochemistry, vol. 2011, Article ID 289032, 9 pages, 2011. View at Publisher · View at Google Scholar
  4. Z. Cui, C. Liu, J. Liao, and W. Xing, “Highly active PtRu catalysts supported on carbon nanotubes prepared by modified impregnation method for methanol electro-oxidation,” Electrochimica Acta, vol. 53, no. 27, pp. 7807–7811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Figueiredo, M. F. R. Pereira, P. Serp, P. Kalck, P. V. Samant, and J. B. Fernandes, “Development of carbon nanotube and carbon xerogel supported catalysts for the electro-oxidation of methanol in fuel cells,” Carbon, vol. 44, no. 12, pp. 2516–2522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Sebastián, J. C. Calderón, J. A. González-Expósito et al., “Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells,” International Journal of Hydrogen Energy, vol. 35, no. 18, pp. 9934–9942, 2010. View at Publisher · View at Google Scholar
  7. L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, and M. J. Lázaro, “Effect of the support properties on the preparation and performance of platinum catalysts supported on carbon nanofibers,” Journal of Power Sources, vol. 192, no. 1, pp. 144–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Calvillo, M. J. Lázaro, E. García-Bordejé et al., “Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells,” Journal of Power Sources, vol. 169, no. 1, pp. 59–64, 2007. View at Publisher · View at Google Scholar
  9. N. Job, M. F. R. Pereira, S. Lambert et al., “Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels,” Journal of Catalysis, vol. 240, no. 2, pp. 160–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. P. V. Samant, J. B. Fernandes, C. M. Rangel, and J. L. Figueiredo, “Carbon xerogel supported Pt and Pt-Ni catalysts for electro-oxidation of methanol in basic medium,” Catalysis Today, vol. 102-103, pp. 173–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Kim, W. I. Kim, T. J. Park, H. S. Park, and D. J. Suh, “Highly dispersed platinum-carbon aerogel catalyst for polymer electrolyte membrane fuel cells,” Carbon, vol. 46, no. 11, pp. 1393–1400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Marie, S. Berthon-Fabry, P. Achard, M. Chatenet, A. Pradourat, and E. Chainet, “Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths,” Journal of Non-Crystalline Solids, vol. 350, pp. 88–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Job, J. Marie, S. Lambert, S. Berthon-Fabry, and P. Achard, “Carbon xerogels as catalyst supports for PEM fuel cell cathode,” Energy Conversion and Management, vol. 49, no. 9, pp. 2461–2470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Yu and S. Ye, “Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst,” Journal of Power Sources, vol. 172, no. 1, pp. 133–144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, and M. Mastragostino, “Cryo- and xerogel carbon supported PtRu for DMFC anodes,” Journal of Power Sources, vol. 172, no. 2, pp. 578–586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. W. Pekala, “Organic aerogels from the polycondensation of resorcinol with formaldehyde,” Journal of Materials Science, vol. 24, no. 9, pp. 3221–3227, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. H. T. Gomes, P. V. Samant, P. Serp, P. Kalck, J. L. Figueiredo, and J. L. Faria, “Carbon nanotubes and xerogels as supports of well-dispersed Pt catalysts for environmental applications,” Applied Catalysis B, vol. 54, no. 3, pp. 175–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Job, A. Théry, R. Pirard et al., “Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials,” Carbon, vol. 43, no. 12, pp. 2481–2494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Kim, J. N. Park, H. Kim, S. Song, and W. H. Lee, “The preparation of Pt/C catalysts using various carbon materials for the cathode of PEMFC,” Journal of Power Sources, vol. 163, no. 1, pp. 93–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Liu and S. Creager, “Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications,” Journal of Power Sources, vol. 195, no. 7, pp. 1812–1820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Job, M. F. R. Pereira, S. Lambert et al., “Highly dispersed platinum catalysts prepared by impregnation of texture-tailored carbon xerogels,” Journal of Catalysis, vol. 240, no. 2, pp. 160–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Al-Muhtaseb and J. A. Ritter, “Preparation and properties of resorcinol-formaldehyde organic and carbon gels,” Advanced Materials, vol. 15, no. 2, pp. 101–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. E. J. Zanto, S. A. Al-Muhtaseb, and J. A. Ritter, “Sol-gel-derived carbon aerogels and xerogels: design of experiments approach to materials synthesis,” Industrial and Engineering Chemistry Research, vol. 41, no. 13, pp. 3151–3162, 2002. View at Google Scholar · View at Scopus
  24. N. Mahata, M. F. R. Pereira, F. Suárez-García, A. Martínez-Alonso, J. M. D. Tascón, and J. L. Figueiredo, “Tuning of texture and surface chemistry of carbon xerogels,” Journal of Colloid and Interface Science, vol. 324, no. 1-2, pp. 150–155, 2008. View at Publisher · View at Google Scholar
  25. C. Lin and J. A. Ritter, “Effect of synthesis PH on the structure of carbon xerogels,” Carbon, vol. 35, no. 9, pp. 1271–1278, 1997. View at Google Scholar · View at Scopus
  26. L. Zubizarreta, A. Arenillas, A. Domínguez, J. A. Menéndez, and J. J. Pis, “Development of microporous carbon xerogels by controlling synthesis conditions,” Journal of Non-Crystalline Solids, vol. 354, no. 10-11, pp. 817–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Job, R. Pirard, J. Marien, and J. P. Pirard, “Porous carbon xerogels with texture tailored by pH control during sol-gel process,” Carbon, vol. 42, no. 3, pp. 619–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. S. Arico, S. Srinivasan, and V. Antonucci, “DMFCs: from fundamental aspects to technology development,” Fuel Cells, vol. 1, pp. 133–161, 2001. View at Google Scholar
  29. S. Srinivasan, Fuel Cells: From Fundamentals to Applications, Springer, New York, NY, USA, 2006.
  30. V. S. Bagotzky and Y. B. Vassilyev, “Mechanism of electro-oxidation of methanol on the platinum electrode,” Electrochimica Acta, vol. 12, no. 9, pp. 1323–1343, 1967. View at Google Scholar · View at Scopus
  31. C. Alegre, L. Calvillo, R. Moliner et al., “Pt and PtRu electrocatalysts supported on carbon xerogels for direct methanol fuel cells,” Journal of Power Sources, vol. 196, no. 9, pp. 4226–4235, 2011. View at Publisher · View at Google Scholar
  32. B. Beden, C. Lamy, N. R. de Tacconi, and A. J. Arvia, “The electrooxidation of CO: a test reaction in electrocatalysis,” Electrochimica Acta, vol. 35, no. 4, pp. 691–704, 1990. View at Google Scholar · View at Scopus
  33. J. M. Feliu, J. M. Orts, A. Femandez-Vega, A. Aldaz, and J. Clavilier, “Electrochemical studies in sulphuric acid solutions of adsorbed CO on Pt (111) electrodes,” Journal of Electroanalytical Chemistry, vol. 296, no. 1, pp. 191–201, 1990. View at Google Scholar · View at Scopus
  34. G. García, J. A. Silva-Chong, O. Guillén-Villafuerte, J. L. Rodríguez, E. R. González, and E. Pastor, “CO tolerant catalysts for PEM fuel cells. Spectroelectrochemical studies,” Catalysis Today, vol. 116, no. 3, pp. 415–421, 2006. View at Publisher · View at Google Scholar
  35. J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, and T. M. Lim, “Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors,” Electrochemistry Communications, vol. 7, no. 3, pp. 249–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Poirier and G. E. Stoner, “Microstructural effects on electrocatalytic oxygen reduction activity of nano-grained thin-film platinum in acid media,” Journal of the Electrochemical Society, vol. 141, no. 2, pp. 425–430, 1994. View at Google Scholar · View at Scopus
  37. M. Watanabe, S. Saegusa, and P. Stonehart, “High platinum electrocatalyst utilizations for direct methanol oxidation,” Journal of Electroanalytical Chemistry, vol. 271, no. 1-2, pp. 213–220, 1989. View at Google Scholar