Table of Contents Author Guidelines Submit a Manuscript
Comparative and Functional Genomics
Volume 2012, Article ID 836374, 10 pages
http://dx.doi.org/10.1155/2012/836374
Review Article

Turning on Myogenin in Muscle: A Paradigm for Understanding Mechanisms of Tissue-Specific Gene Expression

1Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6
2Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5

Received 14 February 2012; Accepted 23 April 2012

Academic Editor: Lucia Latella

Copyright © 2012 Herve Faralli and F. Jeffrey Dilworth. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. W. Brock and C. L. Fisher, “Maintenance of gene expression patterns,” Developmental Dynamics, vol. 232, no. 3, pp. 633–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Sassoon, G. Lyons, W. E. Wright et al., “Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis,” Nature, vol. 341, no. 6240, pp. 303–307, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Buckingham and D. Montarras, “Skeletal muscle stem cells,” Current Opinion in Genetics and Development, vol. 18, no. 4, pp. 330–336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Hasty, A. Bradley, J. H. Morris et al., “Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene,” Nature, vol. 364, no. 6437, pp. 501–506, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Venuti, J. H. Morris, J. L. Vivian, E. N. Olson, and W. H. Klein, “Myogenin is required for late but not early aspects of myogenesis during mouse development,” Journal of Cell Biology, vol. 128, no. 4, pp. 563–576, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. M. G. Cusella-De Angelis, G. Lyons, C. Sonnino et al., “MyoD, myogenin independent differentiation of primordial myoblasts in mouse somites,” Journal of Cell Biology, vol. 116, no. 5, pp. 1243–1255, 1992. View at Google Scholar · View at Scopus
  7. P. Zhao, S. Iezzi, E. Carver et al., “Slug is a novel downstream target of MyoD. Temporal profiling in muscle regeneration,” Journal of Biological Chemistry, vol. 277, no. 33, pp. 30091–30101, 2002. View at Google Scholar · View at Scopus
  8. E. Meadows, J. M. Flynn, and W. H. Klein, “Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice,” PLoS ONE, vol. 6, no. 1, Article ID e16184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. G. Edmondson, T. C. Cheng, P. Cserjesi, T. Chakraborty, and E. N. Olson, “Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2,” Molecular and Cellular Biology, vol. 12, no. 9, pp. 3665–3677, 1992. View at Google Scholar · View at Scopus
  10. S. P. Yee and P. W. J. Rigby, “The regulation of myogenin gene expression during the embryonic development of the mouse,” Genes and Development A, vol. 7, no. 7, pp. 1277–1289, 1993. View at Google Scholar · View at Scopus
  11. O. Ram, A. Goren, I. Amit et al., “Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells,” Cell, vol. 147, pp. 1628–1639, 2011. View at Google Scholar
  12. P. Asp, R. Blum, V. Vethantham et al., “Genome-wide remodeling of the epigenetic landscape during myogenic differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 22, pp. E149–E158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Cao, Z. Yao, D. Sarkar et al., “Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming,” Developmental Cell, vol. 18, no. 4, pp. 662–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. H. Washabaugh, M. P. Ontell, S. H. Shand, N. Bradbury, J. A. Kant, and M. Ontell, “Neuronal control of myogenic regulatory factor accumulation in fetal muscle,” Developmental Dynamics, vol. 236, no. 3, pp. 732–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Spitz, J. Demignon, A. Porteu et al., “Expression of myogenin during embryogenesis is controlled by six/sine oculis homeoproteins through a conserved MEF3 binding site,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14220–14225, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Berkes, D. A. Bergstrom, B. H. Penn, K. J. Seaver, P. S. Knoepfler, and S. J. Tapscott, “Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential,” Molecular Cell, vol. 14, no. 4, pp. 465–477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. D. E. Deato and R. Tjian, “Switching of the core transcription machinery during myogenesis,” Genes and Development, vol. 21, no. 17, pp. 2137–2149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. T. C. Cheng, M. C. Wallace, J. P. Merlie, and E. N. Olson, “Separable regulatory elements governing myogenin transcription in mouse embryogenesis,” Science, vol. 261, no. 5118, pp. 215–218, 1993. View at Google Scholar · View at Scopus
  19. C. Laclef, G. Hamard, J. Demignon, E. Souil, C. Houbron, and P. Maire, “Altered myogenesis in Six1-deficient mice,” Development, vol. 130, no. 10, pp. 2239–2252, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Berghella, L. De Angelis, T. De Buysscher et al., “A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle,” Genes and Development, vol. 22, no. 15, pp. 2125–2138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Yao, R. D. Fetter, P. Hu, E. Betzig, and R. Tjian, “Subnuclear segregation of genes and core promoter factors in myogenesis,” Genes and Development, vol. 25, no. 6, pp. 569–580, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Fuso, G. Ferraguti, F. Grandoni et al., “Early demethylation of non-CpG, CpC-rich, elements in the myogenin 5′-flanking region: a priming effect on the spreading of active demethylation?” Cell Cycle, vol. 9, no. 19, pp. 3965–3976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Palacios, D. Summerbell, P. W. J. Rigby, and J. Boyes, “Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene,” Molecular and Cellular Biology, vol. 30, no. 15, pp. 3805–3815, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Deaton and A. Bird, “CpG islands and the regulation of transcription,” Genes and Development, vol. 25, no. 10, pp. 1010–1022, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Oikawa, R. Omori, T. Nishii, Y. Ishida, M. Kawaichi, and E. Matsuda, “The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression,” Cell Research, vol. 21, pp. 1578–1590, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Liu, A. Chu, I. Chakroun, U. Islam, and A. Blais, “Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation,” Nucleic Acids Research, vol. 38, no. 20, pp. 6857–6871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Zhang, T. A. McKinsey, and E. N. Olson, “Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation,” Molecular and Cellular Biology, vol. 22, no. 20, pp. 7302–7312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Mal and M. L. Harter, “MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 1735–1739, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. Mal, “Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation,” The EMBO Journal, vol. 25, no. 14, pp. 3323–3334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. A. Gillespie, F. Le Grand, A. Scimè et al., “p38-γ-dependent gene silencing restricts entry into the myogenic differentiation program,” Journal of Cell Biology, vol. 187, no. 7, pp. 991–1005, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. B. M. Ling, N. Bharathy, T. K. Chung et al., “Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation,” Proceedings of the National Academy of Sciences of the United State, vol. 109, pp. 841–846, 2012. View at Google Scholar
  32. V. Sartorelli, P. L. Puri, Y. Hamamori et al., “Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program,” Molecular Cell, vol. 4, no. 5, pp. 725–734, 1999. View at Google Scholar · View at Scopus
  33. F. J. Dilworth, K. J. Seaver, A. L. Fishburn, S. L. Htet, and S. J. Tapscott, “In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11593–11598, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Cao, L. Wang, H. Wang et al., “Role of histone H3 lysine 27 methylation in polycomb-group silencing,” Science, vol. 298, no. 5595, pp. 1039–1043, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Seenundun, S. Rampalli, Q. C. Liu et al., “UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis,” The EMBO Journal, vol. 29, no. 8, pp. 1401–1411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Stojic, Z. Jasencakova, C. Prezioso et al., “Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells,” Epigenetics Chromatin, vol. 4, article 16, 2011. View at Google Scholar
  37. A. Mal, M. Sturniolo, R. L. Schiltz, M. K. Ghosh, and M. L. Harter, “A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program,” The EMBO Journal, vol. 20, no. 7, pp. 1739–1753, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Iezzi, M. Di Padova, C. Serra et al., “Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin,” Developmental Cell, vol. 6, no. 5, pp. 673–684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Lu, T. A. McKinsey, C. L. Zhang, and E. N. Olson, “Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases,” Molecular Cell, vol. 6, no. 2, pp. 233–244, 2000. View at Google Scholar · View at Scopus
  40. A. Méjat, F. Ramond, R. Bassel-Duby, S. Khochbin, E. N. Olson, and L. Schaeffer, “Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression,” Nature Neuroscience, vol. 8, no. 3, pp. 313–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Tang, P. Macpherson, M. Marvin et al., “A histone deacetylase 4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression,” Molecular Biology of the Cell, vol. 20, no. 4, pp. 1120–1131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Faralli, E. Martin, N. Core et al., “Teashirt-3, a novel regulator of muscle differentiation, associates with BRG1-associated factor 57 (BAF57) to inhibit myogenin gene expression,” Journal of Biological Chemistry, vol. 286, no. 26, pp. 23498–23510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. V. Forcales, S. Albini, L. Giordani et al., “Signal-dependent incorporation of MyoD-BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex,” The EMBO Journal, vol. 31, pp. 301–316, 2011. View at Google Scholar
  44. A. Zetser, E. Gredinger, and E. Bengal, “p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation: participation of the MEF2C transcription factor,” Journal of Biological Chemistry, vol. 274, no. 8, pp. 5193–5200, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Perdiguero, V. Ruiz-Bonilla, L. Gresh et al., “Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38α in abrogating myoblast proliferation,” The EMBO Journal, vol. 26, no. 5, pp. 1245–1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Lluís, E. Ballestar, M. Suelves, M. Esteller, and P. Muñoz-Cánoves, “E47 phosphorylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription,” The EMBO Journal, vol. 24, no. 5, pp. 974–984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Rampalli, L. Li, E. Mak et al., “p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation,” Nature Structural and Molecular Biology, vol. 14, no. 12, pp. 1150–1156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. B. B. Friday, P. O. Mitchell, K. M. Kegley, and G. K. Pavlath, “Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD,” Differentiation, vol. 71, no. 3, pp. 217–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Serra, D. Palacios, C. Mozzetta et al., “Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation,” Molecular Cell, vol. 28, no. 2, pp. 200–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Caretti, M. Di Padova, B. Micales, G. E. Lyons, and V. Sartorelli, “The polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation,” Genes and Development, vol. 19, no. 6, pp. 2627–2638, 2005. View at Google Scholar · View at Scopus
  51. P. L. Puri, V. Sartorelli, X. J. Yang et al., “Differential roles of p300 and PCAF acetyltransferases in muscle differentiation,” Molecular Cell, vol. 1, no. 1, pp. 35–45, 1997. View at Google Scholar · View at Scopus
  52. J. W. Kim, S. M. Jang, C. H. Kim et al., “Tip60 regulates myoblast differentiation by enhancing the transcriptional activity of MyoD via their physical interactions,” The FEBS Journal, vol. 278, pp. 4394–4404, 2011. View at Google Scholar
  53. J. Choi, H. Jang, H. Kim, S. T. Kim, E. J. Cho, and H. D. Youn, “Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors,” Biochemical and Biophysical Research Communications, vol. 401, no. 3, pp. 327–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Verrier, F. Escaffit, C. Chailleux, D. Trouche, and M. Vandromme, “A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation,” PLoS Genetics, vol. 7, no. 6, Article ID e1001390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Tao, R. L. Neppl, Z. P. Huang et al., “The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly,” The Journal of Cell Biology, vol. 194, pp. 551–565, 2011. View at Google Scholar
  56. H. Wang, R. Cao, L. Xia et al., “Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase,” Molecular Cell, vol. 8, no. 6, pp. 1207–1217, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. C. S. Dacwag, Y. Ohkawa, S. Pal, S. Sif, and A. N. Imbalzano, “The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling,” Molecular and Cellular Biology, vol. 27, no. 1, pp. 384–394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. I. L. de La Serna, Y. Ohkawa, C. A. Berkes et al., “MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex,” Molecular and Cellular Biology, vol. 25, no. 10, pp. 3997–4009, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. E. Deato, M. T. Marr, T. Sottero, C. Inouye, P. Hu, and R. Tjian, “MyoD targets TAF3/TRF3 to activate myogenin transcription,” Molecular Cell, vol. 32, no. 1, pp. 96–105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Heller and E. Bengal, “TFIID (TBP) stabilizes the binding of MyoD to its DNA site at the promoter and MyoD facilitates the association of TFIIB with the preinitiation complex,” Nucleic Acids Research, vol. 26, no. 9, pp. 2112–2119, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Aziz, Q. C. Liu, and F. J. Dilworth, “Regulating a master regulator: establishing tissue-specific gene expression in skeletal muscle,” Epigenetics, vol. 5, no. 8, pp. 691–695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. J. H. Yang, Y. Song, J. H. Seol et al., “Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 85–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Margueron, G. Li, K. Sarma et al., “Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms,” Molecular Cell, vol. 32, no. 4, pp. 503–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Mousavi, H. Zare, A. H. Wang, and V. Sartorelli, “Polycomb protein Ezh1 promotes RNA polymerase II elongation,” Molecular Cell, vol. 45, pp. 255–262, 2012. View at Google Scholar