Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2017 (2017), Article ID 4723193, 17 pages
https://doi.org/10.1155/2017/4723193
Review Article

Molecular Crosstalking among Noncoding RNAs: A New Network Layer of Genome Regulation in Cancer

1BioMolecular, Genome and Complex Systems BioMedicine Unit (BMGS Unit), Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
2IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy

Correspondence should be addressed to Michele Purrello

Received 24 May 2017; Revised 24 July 2017; Accepted 24 August 2017; Published 24 September 2017

Academic Editor: Brian Wigdahl

Copyright © 2017 Marco Ragusa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Nowak, “Mining treasures from ‘junk DNA’,” Science, vol. 263, no. 5147, pp. 608–610, 1994. View at Publisher · View at Google Scholar
  2. E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing and analysis of the human genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Venter, M. D. Adams, E. W. Myers et al., “The sequence of the human genome,” Science, vol. 291, no. 5507, pp. 1304–1351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. International Human Genome Sequencing Consortium, “Finishing the euchromatic sequence of the human genome,” Nature, vol. 431, no. 7011, pp. 931–945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Clamp, B. Fry, M. Kamal et al., “Distinguishing protein-coding and noncoding genes in the human genome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19428–19433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Ezkurdia, D. Juan, J. M. Rodriguez et al., “Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes,” Human Molecular Genetics, vol. 23, no. 22, pp. 5866–5878, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. ENCODE Project Consortium, E. Birney, J. A. Stamatoyannopoulos et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, vol. 447, no. 7146, pp. 799–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. E. Bernstein, J. A. Stamatoyannopoulos, J. F. Costello et al., “The NIH roadmap epigenomics mapping consortium,” Nature Biotechnology, vol. 28, no. 10, pp. 1045–1048, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Sana, P. Faltejskova, M. Svoboda, and O. Slaby, “Novel classes of non-coding RNAs and cancer,” Journal of Translational Medicine, vol. 10, p. 103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Huang, A. Alvarez, B. Hu, and S. Y. Cheng, “Noncoding RNAs in cancer and cancer stem cells,” Chinese Journal of Cancer, vol. 32, no. 11, pp. 582–593, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Fatima, V. S. Akhade, D. Pal, and S. M. Rao, “Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets,” Molecular and Cellular Therapies, vol. 3, no. 1, p. 5, 2015. View at Publisher · View at Google Scholar
  12. J. R. Prensner and A. M. Chinnaiyan, “The emergence of lncRNAs in cancer biology,” Cancer Discovery, vol. 1, no. 5, pp. 391–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Geisler and J. Coller, “RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts,” Nature Reviews Molecular Cell Biology, vol. 14, no. 11, pp. 699–712, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ragusa, C. Barbagallo, L. Statello et al., “Non-coding landscapes of colorectal cancer,” World Journal of Gastroenterology, vol. 21, no. 41, pp. 11709–11739, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Friedman, K. K. Farh, C. B. Burge, and D. P. Bartel, “Most mammalian mRNAs are conserved targets of microRNAs,” Genome Research, vol. 19, no. 1, pp. 92–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Wilczynska and M. Bushell, “The complexity of miRNA-mediated repression,” Cell Death and Differentiation, vol. 22, no. 1, pp. 22–33, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. R. C. Lee, R. L. Feinbaum, and V. Ambros, “The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14,” Cell, vol. 75, no. 5, pp. 843–854, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Ameres and P. D. Zamore, “Diversifying microRNA sequence and function,” Nature Reviews Molecular Cell Biology, vol. 14, no. 8, pp. 475–488, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Valinezhad Orang, R. Safaralizadeh, and M. Kazemzadeh-Bavili, “Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation,” International Journal of Genomics, vol. 2014, Article ID 970607, 15 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. R. W. Carthew and E. J. Sontheimer, “Origins and mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kozomara and S. Griffiths-Jones, “miRBase: annotating high confidence microRNAs using deep sequencing data,” Nucleic Acids Research, vol. 42, Database issue, pp. D68–D73, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. L. A. Macfarlane and P. R. Murphy, “MicroRNA: biogenesis, function and role in cancer,” Current Genomics, vol. 11, no. 7, pp. 537–561, 2010. View at Publisher · View at Google Scholar
  24. C. M. Croce, “Causes and consequences of microRNA dysregulation in cancer,” Nature Reviews Genetics, vol. 10, no. 10, pp. 704–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Volinia, G. A. Calin, C. G. Liu et al., “A microRNA expression signature of human solid tumors defines cancer gene targets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2257–2261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Jay, J. Nemunaitis, P. Chen, P. Fulgham, and A. W. Tong, “miRNA profiling for diagnosis and prognosis of human cancer,” DNA and Cell Biology, vol. 26, no. 5, pp. 293–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ragusa, L. Statello, M. Maugeri et al., “Highly skewed distribution of miRNAs and proteins between colorectal cancer cells and their exosomes following cetuximab treatment: biomolecular, genetic and translational implications,” Oncoscience, vol. 1, no. 2, pp. 132–157, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Ma, T. Jiang, and X. Kang, “Circulating microRNAs in cancer: origin, function and application,” Journal of Experimental & Clinical Cancer Research, vol. 31, no. 1, p. 38, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Cheng, “Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy,” Advanced Drug Delivery Reviews, vol. 81, pp. 75–93, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ragusa, C. Barbagallo, L. Statello et al., “miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: pathological and diagnostic implications,” Cancer Biology & Therapy, vol. 16, no. 9, pp. 1387–1396, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. P. J. Volders, K. Helsens, X. Wang et al., “LNCipedia: a database for annotated human lncRNA transcript sequences and structures,” Nucleic Acids Research, vol. 41, Database issue, pp. D246–D251, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Nie, H. J. Wu, J. M. Hsu et al., “Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer,” American Journal of Translational Research, vol. 4, no. 2, pp. 127–150, 2012. View at Google Scholar
  33. I. Martianov, A. Ramadass, A. Serra Barros, N. Chow, and A. Akoulitchev, “Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript,” Nature, vol. 445, no. 7128, pp. 666–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Li, B. Liu, O. L. Wapinski et al., “Targeted disruption of Hotair leads to homeotic transformation and gene derepression,” Cell Reports, vol. 5, no. 1, pp. 3–12, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Engreitz, N. Ollikainen, and M. Guttman, “Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression,” Nature Reviews Molecular Cell Biology, vol. 17, no. 12, pp. 756–770, 2016. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Beltran, I. Puig, C. Pena et al., “A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition,” Genes & Development, vol. 22, no. 6, pp. 756–769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Liu, Y. Huang, J. Chen et al., “Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1AS expression,” Molecular Medicine Reports, vol. 10, no. 3, pp. 1275–1281, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Rosa and M. Ballarino, “Long noncoding RNA regulation of pluripotency,” Stem Cells International, vol. 2016, Article ID 1797692, 9 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Fatica and I. Bozzoni, “Long non-coding RNAs: new players in cell differentiation and development,” Nature Reviews. Genetics, vol. 15, no. 1, pp. 7–21, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Kitagawa, K. Kitagawa, Y. Kotake, H. Niida, and T. Ohhata, “Cell cycle regulation by long non-coding RNAs,” Cellular and Molecular Life Sciences, vol. 70, no. 24, pp. 4785–4794, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Su, H. Wu, A. Pavlosky et al., “Regulatory non-coding RNA: new instruments in the orchestration of cell death,” Cell Death & Disease, vol. 7, no. 8, article e2333, 2016. View at Publisher · View at Google Scholar
  42. P. Zhang, P. Cao, X. Zhu et al., “Upregulation of long non-coding RNA HOXA-AS2 promotes proliferation and induces epithelial-mesenchymal transition in gallbladder carcinoma,” Oncotarget, vol. 8, no. 20, pp. 33137–33143, 2017. View at Publisher · View at Google Scholar
  43. S. Deguchi, K. Katsushima, A. Hatanaka et al., “Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis,” Oncogene, vol. 36, no. 32, pp. 4629–4640, 2017. View at Publisher · View at Google Scholar
  44. F. Yun-Bo, L. Xiao-Po, L. Xiao-Li, C. Guo-Long, Z. Pei, and T. Fa-Ming, “LncRNA TUG1 is upregulated and promotes cell proliferation in osteosarcoma,” Open Medicine, vol. 11, no. 1, pp. 163–167, 2016. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Tian, X. Hu, W. Gao et al., “Identification of the long noncoding RNA LET as a novel tumor suppressor in gastric cancer,” Molecular Medicine Reports, vol. 15, no. 4, pp. 2229–2234, 2017. View at Publisher · View at Google Scholar
  46. G. Luo, D. Liu, C. Huang et al., “LncRNA GAS5 inhibits cellular proliferation by targeting P27Kip1,” Molecular Cancer Research, vol. 15, no. 7, pp. 789–799, 2017. View at Publisher · View at Google Scholar
  47. Z. Li, C. Jin, S. Chen et al., “Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p,” Molecular and Cellular Biochemistry, vol. 433, no. 1-2, pp. 51–60, 2017. View at Publisher · View at Google Scholar
  48. J. Liu, T. Liu, X. Wang, and A. He, “Circles reshaping the RNA world: from waste to treasure,” Molecular Cancer, vol. 16, no. 1, p. 58, 2017. View at Publisher · View at Google Scholar
  49. H. L. Sanger, G. Klotz, D. Riesner, H. J. Gross, and A. K. Kleinschmidt, “Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 11, pp. 3852–3856, 1976. View at Publisher · View at Google Scholar
  50. C. Cocquerelle, B. Mascrez, D. Hetuin, and B. Bailleul, “Mis-splicing yields circular RNA molecules,” The FASEB Journal, vol. 7, no. 1, pp. 155–160, 1993. View at Google Scholar
  51. J. Salzman, C. Gawad, P. L. Wang, N. Lacayo, and P. O. Brown, “Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types,” PLoS One, vol. 7, no. 2, article e30733, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. W. R. Jeck, J. A. Sorrentino, K. Wang et al., “Circular RNAs are abundant, conserved, and associated with ALU repeats,” RNA, vol. 19, no. 2, pp. 141–157, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Chen, C. Y. Chen, and T. J. Chuang, “Biogenesis, identification, and function of exonic circular RNAs,” Wiley Interdisciplinary Reviews RNA, vol. 6, no. 5, pp. 563–579, 2015. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Glazar, P. Papavasileiou, and N. Rajewsky, “circBase: a database for circular RNAs,” RNA, vol. 20, no. 11, pp. 1666–1670, 2014. View at Publisher · View at Google Scholar · View at Scopus
  55. T. B. Hansen, T. I. Jensen, B. H. Clausen et al., “Natural RNA circles function as efficient microRNA sponges,” Nature, vol. 495, no. 7441, pp. 384–388, 2013. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Lasda and R. Parker, “Circular RNAs: diversity of form and function,” RNA, vol. 20, no. 12, pp. 1829–1842, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. J. U. Guo, V. Agarwal, H. Guo, and D. P. Bartel, “Expanded identification and characterization of mammalian circular RNAs,” Genome Biology, vol. 15, no. 7, p. 409, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Enuka, M. Lauriola, M. E. Feldman, A. Sas-Chen, I. Ulitsky, and Y. Yarden, “Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor,” Nucleic Acids Research, vol. 44, no. 3, pp. 1370–1383, 2016. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Y. Chen and P. Sarnow, “Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs,” Science, vol. 268, no. 5209, pp. 415–417, 1995. View at Publisher · View at Google Scholar
  60. N. R. Pamudurti, O. Bartok, M. Jens et al., “Translation of CircRNAs,” Molecular Cell, vol. 66, no. 1, pp. 9–21.e7, 2017. View at Publisher · View at Google Scholar
  61. M. Huang, Z. Zhong, M. Lv, J. Shu, Q. Tian, and J. Chen, “Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma,” Oncotarget, vol. 7, no. 30, pp. 47186–47200, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. W. W. Du, W. Yang, E. Liu, Z. Yang, P. Dhaliwal, and B. B. Yang, “Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2,” Nucleic Acids Research, vol. 44, no. 6, pp. 2846–2858, 2016. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Li, X. Hao, H. Wang et al., “Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray,” Cellular Physiology and Biochemistry, vol. 40, no. 6, pp. 1334–1344, 2016. View at Publisher · View at Google Scholar
  64. A. Bachmayr-Heyda, A. T. Reiner, K. Auer et al., “Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues,” Scientific Reports, vol. 5, no. 1, 8057 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Dou, D. J. Cha, J. L. Franklin et al., “Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes,” Scientific Reports, vol. 6, no. 1, article 37982, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Sui, Z. Shi, W. Xue et al., “Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology,” Oncology Reports, vol. 37, no. 3, pp. 1804–1814, 2017. View at Publisher · View at Google Scholar
  67. L. Wan, L. Zhang, K. Fan, Z. X. Cheng, Q. C. Sun, and J. J. Wang, “Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β-catenin pathway,” BioMed Research International, vol. 2016, Article ID 1579490, 11 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Zhong, M. Lv, and J. Chen, “Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma,” Scientific Reports, vol. 6, article 30919, 2016. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Memczak, M. Jens, A. Elefsinioti et al., “Circular RNAs are a large class of animal RNAs with regulatory potency,” Nature, vol. 495, no. 7441, pp. 333–338, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Su, J. Xing, Z. Wang, L. Chen, M. Cui, and B. Jiang, “microRNAs and ceRNAs: RNA networks in pathogenesis of cancer,” Chinese Journal of Cancer Research, vol. 25, no. 2, pp. 235–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. J. J. Quinn and H. Y. Chang, “Unique features of long non-coding RNA biogenesis and function,” Nature Reviews Genetics, vol. 17, no. 1, pp. 47–62, 2016. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Xue, X. Li, W. Wu et al., “Upregulation of long non-coding RNA urothelial carcinoma associated 1 by CCAAT/enhancer binding protein alpha contributes to bladder cancer cell growth and reduced apoptosis,” Oncology Reports, vol. 31, no. 5, pp. 1993–2000, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Fang, L. Wu, L. Wang, Y. Yang, Y. Meng, and H. Yang, “Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, vol. 117, no. 1, pp. 89–95, 2014. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Huang, N. Zhou, K. Watabe et al., “Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1),” Cell Death & Disease, vol. 5, article e1008, 2014. View at Publisher · View at Google Scholar
  75. L. Zhang, X. Cao, L. Zhang, X. Zhang, H. Sheng, and K. Tao, “UCA1 Overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy,” Cancer Chemotherapy and Pharmacology, vol. 77, no. 3, pp. 629–634, 2016. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Wang, J. Yuan, N. Feng et al., “Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer,” Tumour Biology, vol. 35, no. 10, pp. 10075–10084, 2014. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Huo, Q. Li, X. Wang et al., “MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2,” Oncotarget, vol. 8, no. 29, pp. 46993–47006, 2017. View at Publisher · View at Google Scholar
  79. Y. Li, Z. Wu, J. Yuan et al., “Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis,” Cancer Letters, vol. 395, pp. 31–44, 2017. View at Publisher · View at Google Scholar
  80. R. Lei, M. Xue, L. Zhang, and Z. Lin, “Long noncoding RNA MALAT1-regulated microRNA 506 modulates ovarian cancer growth by targeting iASPP,” OncoTargets and Therapy, vol. 10, pp. 35–46, 2017. View at Publisher · View at Google Scholar
  81. J. E. Wilusz, S. M. Freier, and D. L. Spector, “3' end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA,” Cell, vol. 135, no. 5, pp. 919–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. V. Tripathi, J. D. Ellis, Z. Shen et al., “The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation,” Molecular Cell, vol. 39, no. 6, pp. 925–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. A. West, C. P. Davis, H. Sunwoo et al., “The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites,” Molecular Cell, vol. 55, no. 5, pp. 791–802, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Leucci, F. Patella, J. Waage et al., “microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus,” Scientific Reports, vol. 3, p. 2535, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Wang, M. Li, Z. Wang et al., “Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells,” The Journal of Biological Chemistry, vol. 290, no. 7, pp. 3925–3935, 2015. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Han, Y. Liu, H. Zhang et al., “Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1,” FEBS Letters, vol. 587, no. 23, pp. 3875–3882, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. F. H. Tsang, S. L. Au, L. Wei et al., “Long non-coding RNA HOTTIP is frequently up-regulated in hepatocellular carcinoma and is targeted by tumour suppressive miR-125b,” Liver International, vol. 35, no. 5, pp. 1597–1606, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Chiyomaru, S. Yamamura, S. Fukuhara et al., “Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR,” PLoS One, vol. 8, no. 8, article e70372, 2013. View at Publisher · View at Google Scholar · View at Scopus
  90. J. H. Yoon, K. Abdelmohsen, J. Kim et al., “Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination,” Nature Communications, vol. 4, p. 2939, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. J. H. Yoon, K. Abdelmohsen, S. Srikantan et al., “LincRNA-p21 suppresses target mRNA translation,” Molecular Cell, vol. 47, no. 4, pp. 648–655, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. J. H. Yoon, M. H. Jo, E. J. White et al., “AUF1 promotes let-7b loading on Argonaute 2,” Genes & Development, vol. 29, no. 15, pp. 1599–1604, 2015. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Chiyomaru, S. Fukuhara, S. Saini et al., “Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells,” The Journal of Biological Chemistry, vol. 289, no. 18, pp. 12550–12565, 2014. View at Publisher · View at Google Scholar · View at Scopus
  94. S. M. Park, A. B. Gaur, E. Lengyel, and M. E. Peter, “The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2,” Genes & Development, vol. 22, no. 7, pp. 894–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Zhou, F. Ye, C. Yin, Y. Zhuang, G. Yue, and G. Zhang, “The interaction between MiR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer,” Cellular Physiology and Biochemistry, vol. 36, no. 4, pp. 1440–1452, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. O. Lustig, I. Ariel, J. Ilan, E. Lev-Lehman, N. De-Groot, and A. Hochberg, “Expression of the imprinted gene H19 in the human fetus,” Molecular Reproduction and Development, vol. 38, no. 3, pp. 239–246, 1994. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Li, B. Yu, J. Li et al., “Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer,” Oncotarget, vol. 5, no. 8, pp. 2318–2329, 2014. View at Publisher · View at Google Scholar
  98. W. P. Tsang, E. K. Ng, S. S. Ng et al., “Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer,” Carcinogenesis, vol. 31, no. 3, pp. 350–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Ribas, X. Ni, M. Castanares et al., “A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts,” Nucleic Acids Research, vol. 40, no. 14, pp. 6821–6833, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. B. Vicinus, C. Rubie, S. K. Faust et al., “miR-21 functionally interacts with the 3'UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells,” Cancer Letters, vol. 316, no. 1, pp. 105–112, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Wang, F. Zou, X. Zhang et al., “microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells,” Cancer Research, vol. 69, no. 20, pp. 8157–8165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. I. A. Asangani, S. A. Rasheed, D. A. Nikolova et al., “MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer,” Oncogene, vol. 27, no. 15, pp. 2128–2136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Roy, Y. Yu, S. B. Padhye, F. H. Sarkar, and A. P. Majumdar, “Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21,” PLoS One, vol. 8, no. 7, article e68543, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. Z. Zhang, Z. Zhu, K. Watabe et al., “Negative regulation of lncRNA GAS5 by miR-21,” Cell Death and Differentiation, vol. 20, no. 11, pp. 1558–1568, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Cao, R. Xu, X. Xu, Y. Zhou, L. Cui, and X. He, “Downregulation of lncRNA CASC2 by microRNA-21 increases the proliferation and migration of renal cell carcinoma cells,” Molecular Medicine Reports, vol. 14, no. 1, pp. 1019–1025, 2016. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Wang, Y. H. Liu, Y. L. Yao et al., “Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21,” Cellular Signalling, vol. 27, no. 2, pp. 275–282, 2015. View at Publisher · View at Google Scholar · View at Scopus
  107. T. B. Hansen, E. D. Wiklund, J. B. Bramsen et al., “miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA,” The EMBO Journal, vol. 30, no. 21, pp. 4414–4422, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. D. Barbagallo, A. Condorelli, M. Ragusa et al., “Dysregulated miR-671-5p / CDR1-AS / CDR1 / VSNL1 axis is involved in glioblastoma multiforme,” Oncotarget, vol. 7, no. 4, pp. 4746–4759, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. P. Song and S. C. Yin, “Long non-coding RNA EWSAT1 promotes human nasopharyngeal carcinoma cell growth in vitro by targeting miR-326/-330-5p,” Aging, vol. 8, no. 11, pp. 2948–2960, 2016. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Xia, S. Chen, Z. Jiang et al., “Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression,” Scientific Reports, vol. 5, article 13445, 2015. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Z. Zhang, “Long non-coding RNA FTH1P3 facilitates oral squamous cell carcinoma progression by acting as a molecular sponge of miR-224-5p to modulate fizzled 5 expression,” Gene, vol. 607, pp. 47–55, 2017. View at Publisher · View at Google Scholar
  112. Y. Xue, T. Ni, Y. Jiang, and Y. Li, “LncRNA GAS5 inhibits tumorigenesis and enhances radiosensitivity by suppressing miR-135b expression in non-small cell lung cancer,” Oncology Research, vol. 25, no. 6, pp. 1027–1037, 2017. View at Publisher · View at Google Scholar
  113. F. Peng, T. T. Li, K. L. Wang et al., “H19/Let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance,” Cell Death & Disease, vol. 8, no. 1, article e2569, 2017. View at Publisher · View at Google Scholar
  114. Y. Gao, H. Meng, S. Liu et al., “LncRNA-HOST2 regulates cell biological behaviors in epithelial ovarian cancer through a mechanism involving microRNA let-7b,” Human Molecular Genetics, vol. 24, no. 3, pp. 841–852, 2015. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Deng, S. B. Yang, F. F. Xu, and J. H. Zhang, “Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge,” Journal of Experimental & Clinical Cancer Research, vol. 34, p. 18, 2015. View at Publisher · View at Google Scholar · View at Scopus
  116. X. He, X. Tan, X. Wang et al., “C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion,” Tumour Biology, vol. 35, no. 12, pp. 12181–12188, 2014. View at Publisher · View at Google Scholar · View at Scopus
  117. F. Yang, X. Xue, J. Bi et al., “Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma,” Journal of Cancer Research and Clinical Oncology, vol. 139, no. 3, pp. 437–445, 2013. View at Publisher · View at Google Scholar · View at Scopus
  118. D. N. Su, S. P. Wu, H. T. Chen, and J. H. He, “HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma,” Oncology Letters, vol. 12, no. 5, pp. 4061–4067, 2016. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Song, Z. Guan, F. Liu, D. Sun, K. Wang, and H. Qu, “Long non-coding RNA HOTAIR promotes HLA-G expression via inhibiting miR-152 in gastric cancer cells,” Biochemical and Biophysical Research Communications, vol. 464, no. 3, pp. 807–813, 2015. View at Publisher · View at Google Scholar · View at Scopus
  120. G. B. Beck-Engeser, A. M. Lum, K. Huppi, N. J. Caplen, B. B. Wang, and M. Wabl, “Pvt1-encoded microRNAs in oncogenesis,” Retrovirology, vol. 5, no. 1, 4 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. T. Li, X. L. Meng, and W. Q. Yang, “Long noncoding RNA PVT1 acts as a “sponge” to inhibit microRNA-152 in gastric cancer cells,” Digestive Diseases and Sciences, 2017. View at Publisher · View at Google Scholar
  122. T. Huang, H. W. Liu, J. Q. Chen et al., “The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer,” Biomedicine & Pharmacotherapy, vol. 88, pp. 302–308, 2017. View at Publisher · View at Google Scholar
  123. J. Wang, X. Liu, H. Wu et al., “CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer,” Nucleic Acids Research, vol. 38, no. 16, pp. 5366–5383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Jin, B. Yan, Q. Lu, Y. Lin, and L. Ma, “Reciprocal regulation of Hsa-miR-1 and long noncoding RNA MALAT1 promotes triple-negative breast cancer development,” Tumour Biology, vol. 37, no. 6, pp. 7383–7394, 2016. View at Publisher · View at Google Scholar · View at Scopus
  125. H. Lu, Y. He, L. Lin et al., “Long non-coding RNA MALAT1 modulates radiosensitivity of HR-HPV+ cervical cancer via sponging miR-145,” Tumour Biology, vol. 37, no. 2, pp. 1683–1691, 2016. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Eades, B. Wolfson, Y. Zhang, Q. Li, Y. Yao, and Q. Zhou, “lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6,” Molecular Cancer Research, vol. 13, no. 2, pp. 330–338, 2015. View at Publisher · View at Google Scholar · View at Scopus
  127. X. Zhou, Q. Gao, J. Wang, X. Zhang, K. Liu, and Z. Duan, “Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145,” Gynecologic Oncology, vol. 133, no. 2, pp. 333–339, 2014. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Tan, K. Qiu, M. Li, and Y. Liang, “Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells,” FEBS Letters, vol. 589, no. 20, Part B, pp. 3175–3181, 2015. View at Publisher · View at Google Scholar · View at Scopus
  129. H. Cai, X. Liu, J. Zheng et al., “Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma,” Oncogene, vol. 36, no. 3, pp. 318–331, 2017. View at Publisher · View at Google Scholar · View at Scopus
  130. F. Ma, S. H. Wang, Q. Cai et al., “Long non-coding RNA TUG1 promotes cell proliferation and metastasis by negatively regulating miR-300 in gallbladder carcinoma,” Biomedicine & Pharmacotherapy, vol. 88, pp. 863–869, 2017. View at Publisher · View at Google Scholar
  131. C. H. Xie, Y. M. Cao, Y. Huang et al., “Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression,” Tumour Biology, vol. 37, no. 11, pp. 15031–15041, 2016. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Wang, Z. Liu, B. Yao et al., “Long non-coding RNA TUSC7 acts a molecular sponge for miR-10a and suppresses EMT in hepatocellular carcinoma,” Tumour Biology, vol. 37, no. 8, pp. 11429–11441, 2016. View at Publisher · View at Google Scholar · View at Scopus
  133. Q. Liu, J. Huang, N. Zhou et al., “LncRNA loc285194 is a p53-regulated tumor suppressor,” Nucleic Acids Research, vol. 41, no. 9, pp. 4976–4987, 2013. View at Publisher · View at Google Scholar · View at Scopus
  134. P. Qi, M. D. Xu, X. H. Shen et al., “Reciprocal repression between TUSC7 and miR-23b in gastric cancer,” International Journal of Cancer, vol. 137, no. 6, pp. 1269–1278, 2015. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. L. Tuo, X. M. Li, and J. Luo, “Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143,” European Review for Medical and Pharmacological Sciences, vol. 19, no. 18, pp. 3403–3411, 2015. View at Google Scholar
  136. H. J. Li, X. Li, H. Pang, J. J. Pan, X. J. Xie, and W. Chen, “Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer,” Japanese Journal of Clinical Oncology, vol. 45, no. 11, pp. 1055–1063, 2015. View at Publisher · View at Google Scholar · View at Scopus
  137. Z. Bian, L. Jin, J. Zhang et al., “LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p,” Scientific Reports, vol. 6, no. 1, article 23892, 2016. View at Publisher · View at Google Scholar · View at Scopus
  138. F. Wang, H. Q. Ying, B. S. He et al., “Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway,” Oncotarget, vol. 6, no. 10, pp. 7899–7917, 2015. View at Publisher · View at Google Scholar
  139. Y. Yang, Y. Jiang, Y. Wan et al., “UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis,” Tumour Biology, vol. 37, no. 8, pp. 10633–10641, 2016. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. Wei, Q. Sun, L. Zhao et al., “LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma,” Medical Oncology, vol. 33, no. 8, p. 88, 2016. View at Publisher · View at Google Scholar · View at Scopus
  141. C. J. Brown, B. D. Hendrich, J. L. Rupert et al., “The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus,” Cell, vol. 71, no. 3, pp. 527–542, 1992. View at Publisher · View at Google Scholar · View at Scopus
  142. P. C. Schouten, M. A. Vollebergh, M. Opdam et al., “High XIST and low 53BP1 expression predict poor outcome after high-dose alkylating chemotherapy in patients with a BRCA1-like breast cancer,” Molecular Cancer Therapeutics, vol. 15, no. 1, pp. 190–198, 2016. View at Publisher · View at Google Scholar · View at Scopus
  143. Y. Yao, J. Ma, Y. Xue et al., “Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152,” Cancer Letters, vol. 359, no. 1, pp. 75–86, 2015. View at Publisher · View at Google Scholar · View at Scopus
  144. L. K. Zhuang, Y. T. Yang, X. Ma et al., “MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST,” Cell Death & Disease, vol. 7, article e2203, 2016. View at Publisher · View at Google Scholar
  145. P. Song, L. F. Ye, C. Zhang, T. Peng, and X. H. Zhou, “Long non-coding RNA XIST exerts oncogenic functions in human nasopharyngeal carcinoma by targeting miR-34a-5p,” Gene, vol. 592, no. 1, pp. 8–14, 2016. View at Publisher · View at Google Scholar
  146. S. Chang, B. Chen, X. Wang, K. Wu, and Y. Sun, “Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression,” BMC Cancer, vol. 17, no. 1, p. 248, 2017. View at Publisher · View at Google Scholar
  147. J. Zheng, X. Liu, Y. Xue et al., “TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1beta/Derlin-1 pathway,” Journal of Hematology & Oncology, vol. 10, no. 1, 52 pages, 2017. View at Publisher · View at Google Scholar
  148. H. Xie, X. Ren, S. Xin et al., “Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer,” Oncotarget, vol. 7, no. 18, pp. 26680–26691, 2016. View at Publisher · View at Google Scholar · View at Scopus
  149. G. Huang, H. Zhu, Y. Shi, W. Wu, H. Cai, and X. Chen, “Cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway,” PLoS One, vol. 10, no. 6, article e0131225, 2015. View at Publisher · View at Google Scholar · View at Scopus
  150. F. Li, L. Zhang, W. Li et al., “Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway,” Oncotarget, vol. 6, no. 8, pp. 6001–6013, 2015. View at Publisher · View at Google Scholar
  151. L. Yu, X. Gong, L. Sun, Q. Zhou, B. Lu, and L. Zhu, “The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression,” PLoS One, vol. 11, no. 7, article e0158347, 2016. View at Publisher · View at Google Scholar · View at Scopus
  152. L. Chen, S. Zhang, J. Wu et al., “circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family,” Oncogene, vol. 36, no. 32, pp. 4551–4561, 2017. View at Publisher · View at Google Scholar
  153. B. Capel, A. Swain, S. Nicolis et al., “Circular transcripts of the testis-determining gene Sry in adult mouse testis,” Cell, vol. 73, no. 5, pp. 1019–1030, 1993. View at Publisher · View at Google Scholar · View at Scopus
  154. Z. J. Zhao and J. Shen, “Circular RNA participates in the carcinogenesis and the malignant behavior of cancer,” RNA Biology, vol. 14, no. 5, pp. 514–521, 2017. View at Publisher · View at Google Scholar
  155. Q. Wang, H. Tang, S. Yin, and C. Dong, “Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9,” Oncology Reports, vol. 29, no. 5, pp. 2046–2052, 2013. View at Publisher · View at Google Scholar · View at Scopus
  156. T. B. Hansen, J. Kjems, and C. K. Damgaard, “Circular RNA and miR-7 in cancer,” Cancer Research, vol. 73, no. 18, pp. 5609–5612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  157. X. Zhou, X. Xu, J. Wang, J. Lin, and W. Chen, “Identifying miRNA/mRNA negative regulation pairs in colorectal cancer,” Scientific Reports, vol. 5, article 12995, 2015. View at Publisher · View at Google Scholar · View at Scopus
  158. S. Zadran, F. Remacle, and R. D. Levine, “miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 47, pp. 19160–19165, 2013. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Seo, D. Jin, C. H. Choi, and H. Lee, “Integration of microRNA, mRNA, and protein expression data for the identification of cancer-related microRNAs,” PLoS One, vol. 12, no. 1, article e0168412, 2017. View at Publisher · View at Google Scholar
  160. G. Mullokandov, A. Baccarini, A. Ruzo et al., “High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries,” Nature Methods, vol. 9, no. 8, pp. 840–846, 2012. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Arvey, E. Larsson, C. Sander, C. S. Leslie, and D. S. Marks, “Target mRNA abundance dilutes microRNA and siRNA activity,” Molecular Systems Biology, vol. 6, p. 363, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. A. D. Bosson, J. R. Zamudio, and P. A. Sharp, “Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition,” Molecular Cell, vol. 56, no. 3, pp. 347–359, 2014. View at Publisher · View at Google Scholar · View at Scopus
  163. B. D. Brown, B. Gentner, A. Cantore et al., “Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state,” Nature Biotechnology, vol. 25, no. 12, pp. 1457–1467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. M. S. Ebert, J. R. Neilson, and P. A. Sharp, “MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells,” Nature Methods, vol. 4, no. 9, pp. 721–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Mukherji, M. S. Ebert, G. X. Zheng, J. S. Tsang, P. A. Sharp, and A. van Oudenaarden, “MicroRNAs can generate thresholds in target gene expression,” Nature Genetics, vol. 43, no. 9, pp. 854–859, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. U. Ala, F. A. Karreth, C. Bosia et al., “Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 18, pp. 7154–7159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Bosia, A. Pagnani, and R. Zecchina, “Modelling competing endogenous RNA networks,” PLoS One, vol. 8, no. 6, article e66609, 2013. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Jens and N. Rajewsky, “Competition between target sites of regulators shapes post-transcriptional gene regulation,” Nature Reviews Genetics, vol. 16, no. 2, pp. 113–126, 2015. View at Publisher · View at Google Scholar · View at Scopus
  169. A. L. Jackson and P. S. Linsley, “Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application,” Nature Reviews Drug Discovery, vol. 9, no. 1, pp. 57–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. C. Lorenz, P. Hadwiger, M. John, H. P. Vornlocher, and C. Unverzagt, “Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells,” Bioorganic & Medicinal Chemistry Letters, vol. 14, no. 19, pp. 4975–4977, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. M. B. Mowa, C. Crowther, and P. Arbuthnot, “Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators,” Expert Opinion on Drug Delivery, vol. 7, no. 12, pp. 1373–1385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Mallick and J. S. Choi, “Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 1, pp. 755–765, 2014. View at Publisher · View at Google Scholar · View at Scopus
  173. E. Miele, G. P. Spinelli, E. Miele et al., “Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy,” International Journal of Nanomedicine, vol. 7, pp. 3637–3657, 2012. View at Publisher · View at Google Scholar · View at Scopus
  174. D. Ha, N. Yang, and V. Nadithe, “Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges,” Acta Pharmaceutica Sinica B, vol. 6, no. 4, pp. 287–296, 2016. View at Publisher · View at Google Scholar · View at Scopus