Table of Contents Author Guidelines Submit a Manuscript
International Journal of Genomics
Volume 2017, Article ID 9769171, 7 pages
https://doi.org/10.1155/2017/9769171
Research Article

Tissue- and Cell Type-Specific Expression of the Long Noncoding RNA Klhl14-AS in Mouse

1Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
2Department of Internal Medicine, Botucatu School of Medicine, University of São Paulo State, Sao Paulo, SP, Brazil
3Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
4Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
5Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy

Correspondence should be addressed to Gabriella De Vita; ti.aninu@ativedg

Received 25 May 2017; Accepted 10 August 2017; Published 10 September 2017

Academic Editor: Michele Purrello

Copyright © 2017 Sara Carmela Credendino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fatica and I. Bozzoni, “Long non-coding RNAs: new players in cell differentiation and development,” Nature Reviews Genetics, vol. 15, no. 1, pp. 7–21, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Pasut, A. Matsumoto, J. G. Clohessy, and P. P. Pandolfi, “The pleiotropic role of non-coding genes in development and cancer,” Current Opinion in Cell Biology, vol. 43, pp. 104–113, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Djebali, C. A. Davis, A. Merkel et al., “Landscape of transcription in human cells,” Nature, vol. 489, no. 7414, pp. 101–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Maeda, T. Kasukawa, R. Oyama et al., “Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs,” PLoS Genetics, vol. 2, no. 4, article e62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. F. F. Costa, “Non-coding RNAs: meet thy masters,” BioEssays, vol. 32, no. 7, pp. 599–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. N. Cabili, C. Trapnell, L. Goff et al., “Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses,” Genes & Development, vol. 25, no. 18, pp. 1915–1927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Derrien, R. Johnson, G. Bussotti et al., “The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression,” Genome Research, vol. 22, no. 9, pp. 1775–1789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Marques and C. P. Ponting, “Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness,” Genome Biology, vol. 10, no. 11, article R124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. R. Mercer, M. E. Dinger, S. M. Sunkin, M. F. Mehler, and J. S. Mattick, “Specific expression of long noncoding RNAs in the mouse brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 716–721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Vucicevic, O. Corradin, E. Ntini, P. C. Scacheri, and U. A. Ørom, “Long ncRNA expression associates with tissue-specific enhancers,” Cell Cycle, vol. 14, no. 2, pp. 253–260, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Guttman, I. Amit, M. Garber et al., “Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals,” Nature, vol. 458, no. 7235, pp. 223–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Ulitsky, A. Shkumatava, C. H. Jan, H. Sive, and D. P. Bartel, “Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution,” Cell, vol. 147, no. 7, pp. 1537–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Basu, Y. Hadzhiev, G. Petrosino et al., “The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome,” Scientific Reports, vol. 6, article 33210, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. Bassett, A. Akhtar, D. P. Barlow et al., “Considerations when investigating lncRNA function in vivo,” eLife, vol. 3, article e03058, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Morlando, M. Ballarino, A. Fatica, and I. Bozzoni, “The role of long noncoding RNAs in the epigenetic control of gene expression,” ChemMedChem, vol. 9, no. 3, pp. 505–510, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. R. A. Flynn and H. Y. Chang, “Long noncoding RNAs in cell-fate programming and reprogramming,” Cell Stem Cell, vol. 14, no. 6, pp. 752–761, 2014. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Huarte, “The emerging role of lncRNAs in cancer,” Nature Medicine, vol. 21, no. 11, pp. 1253–1261, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Guttman and J. L. Rinn, “Modular regulatory principles of large non-coding RNAs,” Nature, vol. 482, no. 7385, pp. 339–346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. F. P. Marchese and M. Huarte, “Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code,” Epigenetics, vol. 9, no. 1, pp. 21–26, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. J. E. Wilusz, H. Sunwoo, and D. L. Spector, “Long noncoding RNAs: functional surprises from the RNA world,” Genes & Development, vol. 23, no. 13, pp. 1494–1504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Fagman, E. Amendola, L. Parrillo et al., “Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning,” Developmental Biology, vol. 359, no. 2, pp. 163–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. NCBI Resource Coordinators, “Database resources of the national center for biotechnology information,” Nucleic Acids Research, vol. 45, no. D1, pp. D12–D17, 2017. View at Publisher · View at Google Scholar
  23. C. Tyner, G. P. Barber, J. Casper et al., “The UCSC genome browser database: 2017 update,” Nucleic Acids Research, vol. 45, no. D1, pp. D626–D634, 2017. View at Publisher · View at Google Scholar
  24. B. L. Aken, P. Achuthan, W. Akanni et al., “Ensembl 2017,” Nucleic Acids Research, vol. 45, no. D1, pp. D635–D642, 2017. View at Publisher · View at Google Scholar
  25. M. De Menna, V. D'Amato, A. Ferraro et al., “Wnt4 inhibits cell motility induced by oncogenic Ras,” Oncogene, vol. 32, no. 35, pp. 4110–4119, 2013. View at Publisher · View at Google Scholar · View at Scopus