Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012 (2012), Article ID 536426, 8 pages
Research Article

The Effect of the Thioether-Bridged, Stabilized Angiotensin-(1–7) Analogue Cyclic Ang-(1–7) on Cardiac Remodeling and Endothelial Function in Rats with Myocardial Infarction

1Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
2LanthioPep, Nijenborgh 4, 9747 AG Groningen, The Netherlands
3BiOMaDe Technology Foundation, Groningen, The Netherlands
4Department of Pharmacology and Therapy, College of Health Sciences, University of Ilorin, Ilorin, Nigeria

Received 21 July 2011; Accepted 11 August 2011

Academic Editor: Anderson J. Ferreira

Copyright © 2012 Matej Durik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Modulation of renin-angiotensin system (RAS) by angiotensin-(1–7) (Ang-(1–7)) is an attractive approach to combat the detrimental consequences of myocardial infarction (MI). However Ang-(1–7) has limited clinical potential due to its unfavorable pharmacokinetic profile. We investigated effects of a stabilized, thioether-bridged analogue of Ang-(1–7) called cyclic Ang-(1–7) in rat model of myocardial infarction. Rats underwent coronary ligation or sham surgery. Two weeks thereafter infusion with 0.24 or 2.4 μg/kg/h cAng-(1–7) or saline was started for 8 weeks. Thereafter, cardiac morphometric and hemodynamic variables as wells as aortic endothelial function were measured. The average infarct size was 13.8% and was not changed by cAng-(1–7) treatment. MI increased heart weight and myocyte size, which was restored by cAng-(1–7) to sham levels. In addition, cAng-(1–7) lowered left ventricular end-diastolic pressure and improved endothelial function. The results suggest that cAng-(1–7) is a promising new agent in treatment of myocardial infarction and warrant further research.