Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2012 (2012), Article ID 740203, 11 pages
http://dx.doi.org/10.1155/2012/740203
Research Article

Reciprocal Effects of Oxidative Stress on Heme Oxygenase Expression and Activity Contributes to Reno-Vascular Abnormalities in EC-SOD Knockout Mice

1Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama, Japan
2Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
3Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
4Division of Human Anatomy, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
5Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA

Received 12 August 2011; Accepted 19 September 2011

Academic Editor: David E. Stec

Copyright © 2012 Tomoko Kawakami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. G. Abraham and A. Kappas, “Pharmacological and clinical aspects of heme oxygenase,” Pharmacological Reviews, vol. 60, no. 1, pp. 79–127, 2008. View at Publisher · View at Google Scholar
  2. J. Balla, H. S. Jacob, G. Balla, K. Nath, J. W. Eaton, and G. M. Vercellotti, “Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 20, pp. 9285–9289, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. T. W. Sedlak and S. H. Snyder, “Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle,” Pediatrics, vol. 113, no. 6 I, pp. 1776–1782, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Stocker, Y. Yamamoto, and A. F. McDonagh, “Bilirubin is an antioxidant of possible physiological importance,” Science, vol. 235, no. 4792, pp. 1043–1046, 1987. View at Google Scholar · View at Scopus
  5. D. Shippen-Lentz and E. H. Blackburn, “Functional evidence for an RNA template in telomerase,” Science, vol. 247, no. 4942, pp. 546–552, 1990. View at Google Scholar · View at Scopus
  6. M. P. Soares, Y. Lin, J. Anrather et al., “Expression of heme oxygenase-1 can determine cardiac xenograft survival,” Nature Medicine, vol. 4, no. 9, pp. 1073–1077, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Brouard, L. E. Otterbein, J. Anrather et al., “Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1015–1025, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. G. Abraham and A. Kappas, “Heme oxygenase and the cardiovascular-renal system,” Free Radical Biology and Medicine, vol. 39, no. 1, pp. 1–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. H. Kim, A. P. Burgess, M. Li et al., “Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-α and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 833–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Tao, E. Gao, X. Jiao et al., “Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress,” Circulation, vol. 115, no. 11, pp. 1408–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Sharma, S. RamachandraRao, G. Qiu et al., “Adiponectin regulates albuminuria and podocyte function in mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1645–1656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Di Noia, S. Van Driesche, F. Palmieri et al., “Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome c oxidase activity in experimental diabetes,” Journal of Biological Chemistry, vol. 281, no. 23, pp. 15687–15693, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. T. F. Franke, D. R. Kaplan, and L. C. Cantley, “PI3K: downstream AKTion blocks apoptosis,” Cell, vol. 88, no. 4, pp. 435–437, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Alessi, M. Andjelkovic, B. Caudwell et al., “Mechanism of activation of protein kinase B by insulin and IGF-1,” The EMBO Journal, vol. 15, no. 23, pp. 6541–6551, 1996. View at Google Scholar · View at Scopus
  15. R. Zhang, D. Luo, R. Miao et al., “Hsp90-Akt phosphorylates ASK1 and inhibits ASK1-mediated apoptosis,” Oncogene, vol. 24, no. 24, pp. 3954–3963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Mugge, J. H. Elwell, T. E. Peterson, and D. G. Harrison, “Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity,” American Journal of Physiology, vol. 260, no. 2, pp. C219–C225, 1991. View at Google Scholar · View at Scopus
  17. W. J. Welch, T. Chabrashvili, G. Solis et al., “Role of extracellular superoxide dismutase in the mouse angiotensin slow pressor response,” Hypertension, vol. 48, no. 5, pp. 934–941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Stralin, K. Karlsson, B. O. Johansson, and S. L. Marklund, “The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 11, pp. 2032–2036, 1995. View at Google Scholar · View at Scopus
  19. Y. Chu, S. Iida, D. D. Lund et al., “Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain,” Circulation Research, vol. 92, no. 4, pp. 461–468, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. O. Jung, S. L. Marklund, H. Geiger, T. Pedrazzini, R. Busse, and R. P. Brandes, “Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice,” Circulation Research, vol. 93, no. 7, pp. 622–629, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Kinobe, Y. Ji, and K. Nakatsu, “Peroxynitrite-mediated inactivation of heme oxygenases,” BMC Pharmacology, vol. 4, article 26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. Fattman, L. Y. Chang, T. A. Termin, L. Petersen, J. J. Enghild, and T. D. Oury, “Enhanced bleomycin-induced pulmonary damage in mice lacking extracellular superoxide dismutase,” Free Radical Biology and Medicine, vol. 35, no. 7, pp. 763–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. N. G. Abraham, R. Rezzani, L. Rodella et al., “Overexpression of human heme oxygenase-1 attenuates endothelial cell sloughing in experimental diabetes,” American Journal of Physiology, vol. 287, no. 6, pp. H2468–H2477, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. M. Mohazzab-H, P. M. Kaminski, R. P. Fayngersh, and M. S. Wolin, “Oxygen-elicited responses in calf coronary arteries: role of H2O2 production via NADH-derived superoxide,” American Journal of Physiology, vol. 270, no. 3, pp. H1044–H1053, 1996. View at Google Scholar · View at Scopus
  25. N. G. Abraham, T. Kushida, J. McClung et al., “Heme oxygenase-1 attenuates glucose-mediated cell growth arrest and apoptosis in human microvessel endothelial cells,” Circulation Research, vol. 93, no. 6, pp. 507–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. N. G. Abraham, G. Scapagnini, and A. Kappas, “Human heme oxygenase: cell cycle-dependent expression and DNA microarray identification of multiple gene responses after transduction of endothelial cells,” Journal of Cellular Biochemistry, vol. 90, no. 6, pp. 1098–1111, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Sodhi, K. Inoue, K. H. Gotlinger et al., “Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 331, no. 3, pp. 906–916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. I. Goodman, P. N. Chander, R. Rezzani et al., “Heme oxygenase-2 deficiency contributes to diabetes-mediated increase in superoxide anion and renal dysfunction,” Journal of the American Society of Nephrology, vol. 17, no. 4, pp. 1073–1081, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. L. Kruger, S. J. Peterson, M. L. Schwartzman et al., “Up-regulation of heme oxygenase provides vascular protection in an animal model of diabetes through its antioxidant and antiapoptotic effects,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 3, pp. 1144–1152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Quan, P. M. Kaminski, L. Yang et al., “Heme oxygenase-1 prevents superoxide anion-associated endothelial cell sloughing in diabetic rats,” Biochemical and Biophysical Research Communications, vol. 315, no. 2, pp. 509–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. J. Peterson, D. H. K. Kim, M. Li et al., “The L-4F mimetic peptide prevents insulin resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice,” Journal of Lipid Research, vol. 50, no. 7, pp. 1293–1304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Sambuceti, S. Morbelli, L. Vanella et al., “Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage, reversed by increases in pAMPK, heme oxygenase-1, and adiponectin,” Stem Cells, vol. 27, no. 2, pp. 399–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Nicolai, M. Li, D. H. Kim et al., “Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats,” Hypertension, vol. 53, no. 3, pp. 508–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. J. Peterson, G. Drummond, D. H. Kim et al., “L-4F treatment reduces adiposity, increases adiponectin levels, and improves insulin sensitivity in obese mice,” Journal of Lipid Research, vol. 49, no. 8, pp. 1658–1669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Burgess, M. Li, L. Vanella et al., “Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice,” Hypertension, vol. 56, no. 6, pp. 1124–1130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. H. Kim, L. Vanella, K. Inoue et al., “Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ,” Stem Cells and Development, vol. 19, no. 12, pp. 1863–1873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Ichijo, E. Nishida, K. Irie et al., “Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways,” Science, vol. 275, no. 5296, pp. 90–94, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Saitoh, H. Nishitoh, M. Fujii et al., “Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1,” The EMBO Journal, vol. 17, no. 9, pp. 2596–2606, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Hattori, I. Naguro, C. Runchel, and H. Ichijo, “The roles of ASK family proteins in stress responses and diseases,” Cell Communication and Signaling, vol. 7, p. 9, 2009. View at Publisher · View at Google Scholar
  40. R. Olszanecki, R. Rezzani, S. Omura et al., “Genetic suppression of HO-1 exacerbates renal damage: reversed by an increase in the antiapoptotic signaling pathway,” American Journal of Physiology, vol. 292, no. 1, pp. F148–F157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. H. Ix and K. Sharma, “Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK,” Journal of the American Society of Nephrology, vol. 21, no. 3, pp. 406–412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S. W. Ryter, J. Alam, and A. M. K. Choi, “Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications,” Physiological Reviews, vol. 86, no. 2, pp. 583–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. D. Imig, “Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases,” American Journal of Physiology, vol. 289, no. 3, pp. F496–F503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. A. Spector and A. W. Norris, “Action of epoxyeicosatrienoic acids on cellular function,” American Journal of Physiology, vol. 292, no. 3, pp. C996–C1012, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Chen, M. Montagnani, T. Funahashi, I. Shimomura, and M. J. Quon, “Adiponectin stimulates production of nitric oxide in vascular endothelial cells,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 45021–45026, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Xi, H. Satoh, H. Kase, K. Suzuki, and Y. Hattori, “Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 200–205, 2005. View at Publisher · View at Google Scholar · View at Scopus