Table of Contents Author Guidelines Submit a Manuscript
International Journal of Hypertension
Volume 2013 (2013), Article ID 521783, 7 pages
http://dx.doi.org/10.1155/2013/521783
Review Article

The Angiotensin-Melatonin Axis

1Center of Innovation, Technology and Education—(CITE), Camilo Castelo Branco University (UNICASTELO), São José dos Campos Technology Park, Presidente Dutra Road Km 138, 12247-004 São José dos Campos, SP, Brazil
2Department of Physiology, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
3Cardiovascular Research, Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany

Received 30 October 2012; Revised 18 December 2012; Accepted 19 December 2012

Academic Editor: Patrick Vanderheyden

Copyright © 2013 Luciana A. Campos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Bader, J. Peters, O. Baltatu, D. N. Müller, F. C. Luft, and D. Ganten, “Tissue renin-angiotensin systems: new insights from experimental animal models in hypertension research,” Journal of Molecular Medicine, vol. 79, no. 2, pp. 76–102, 2001. View at Google Scholar · View at Scopus
  2. L. A. Campos, M. Bader, and O. C. Baltatu, “Brain renin-angiotensin system in hypertension, cardiac hypertrophy, and heart failure,” Frontiers in Physiology, vol. 2, artile 115, 2011. View at Publisher · View at Google Scholar
  3. O. C. Baltatu, L. A. Campos, and M. Bader, “Local renin-angiotensin system and the brain: a continuous quest for knowledge,” Peptides, vol. 32, no. 5, pp. 1083–1086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. T. G. von Lueder and H. Krum, “RAAS inhibitors and cardiovascular protection in large scale trials,” Cardiovascular Drugs and Therapy, 2012. In press.
  5. P. Pevet and E. Challet, “Melatonin: both master clock output and internal time-giver in the circadian clocks network,” Journal of Physiology Paris, vol. 105, no. 4-6, pp. 170–182, 2011. View at Publisher · View at Google Scholar
  6. R. Hardeland, “Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction,” The Scientific World Journal, vol. 2012, Article ID 640389, 18 pages, 2012. View at Publisher · View at Google Scholar
  7. A. Carpentieri, G. Díaz de Barboza, V. Areco, and N. Tolosa de Talamoni, “New perspectives in melatonin uses,” Pharmacological Research, vol. 65, no. 4, pp. 437–444, 2012. View at Publisher · View at Google Scholar
  8. L. A. Campos, A. S. Couto, R. Iliescu et al., “Differential regulation of central vasopressin receptors in transgenic rats with low brain angiotensinogen,” Regulatory Peptides, vol. 119, no. 3, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Baltatu, H. Nishimura, S. Hoffmann et al., “High levels of human chymase expression in the pineal and pituitary glands,” Brain Research, vol. 752, no. 1-2, pp. 269–278, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Baltatu, A. Lippoldt, A. Hansson, D. Ganten, and M. Bader, “Local renin-angiotensin system in the pineal gland,” Molecular Brain Research, vol. 54, no. 2, pp. 237–242, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Baltatu, S. C. Afeche, S. H. José dos Santos et al., “Locally synthesized angiotensin modulates pineal melatonin generation,” Journal of Neurochemistry, vol. 80, no. 2, pp. 328–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. F. Reilly, E. J. Westgate, and G. A. FitzGerald, “Peripheral circadian clocks in the vasculature,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 8, pp. 1694–1705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Duez and B. Staels, “Nuclear receptors linking circadian rhythms and cardiometabolic control,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 8, pp. 1529–1534, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Takeda and K. Maemura, “Circadian clock and vascular disease,” Hypertension Research, vol. 33, no. 7, pp. 645–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Campos, R. Plehm, J. Cipolla-Neto, M. Bader, and O. C. Baltatu, “Altered circadian rhythm reentrainment to light phase shifts in rats with low levels of brain angiotensinogen,” The American Journal of Physiology, vol. 290, no. 4, pp. R1122–R1127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Baltatu, B. J. Janssen, G. Bricca et al., “Alterations in blood pressure and heart rate variability in transgenic rats with low brain angiotensinogen,” Hypertension, vol. 37, no. 2, pp. 408–413, 2001. View at Google Scholar · View at Scopus
  17. I. Herichová, B. Mravec, K. Stebelová et al., “Rhythmic clock gene expression in heart, kidney and some brain nuclei involved in blood pressure control in hypertensive TGR(mREN-2)27 rats,” Molecular and Cellular Biochemistry, vol. 296, no. 1-2, pp. 25–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Lemmer, K. Witte, H. Enzminger, S. Schiffer, and S. Hauptfleisch, “Transgenic TGR(mREN2)27 rats as a model for disturbed circadian organization at the level of the brain, the heart, and the kidneys,” Chronobiology International, vol. 20, no. 4, pp. 711–738, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Holmes and D. Sugden, “The effect of melatonin on pinealectomy induced hypertension in the rat,” British Journal of Pharmacology, vol. 56, no. 3, pp. 360–361, 1976. View at Google Scholar · View at Scopus
  20. H. Karppanen, S. Lahovaara, P. Mannisto, and H. Vapaatalo, “Plasma renin activity and in vitro synthesis of aldosterone by the adrenal glands of rats with spontaneous, renal, or pinealectomy induced hypertension,” Acta Physiologica Scandinavica, vol. 94, no. 2, pp. 184–188, 1975. View at Google Scholar · View at Scopus
  21. P. J. Meneuvonen and H. Karppanen, “Effects of hydrochlorothiazide, furosemide and ethacrynic acid on pinealectomy-induced hypertension in rats,” Annales Medicinae Experimentalis et Biologiae Fenniae, vol. 49, no. 3, pp. 120–124, 1971. View at Google Scholar · View at Scopus
  22. R. M. Slominski, R. J. Reiter, N. Schlabritz-Loutsevitch, R. S. Ostrom, and A. T. Slominski, “Melatonin membrane receptors in peripheral tissues: distribution and functions,” Molecular and Cellular Endocrinology, vol. 351, no. 2, pp. 152–166, 2012. View at Publisher · View at Google Scholar
  23. S. Tengattini, R. J. Reiter, D. X. Tan, M. P. Terron, L. F. Rodella, and R. Rezzani, “Cardiovascular diseases: protective effects of melatonin,” Journal of Pineal Research, vol. 44, no. 1, pp. 16–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Dominguez-Rodriguez, “Melatonin in cardiovascular disease,” Expert Opinion on Investigational Drugs, vol. 21, no. 11, pp. 1593–1596, 2012. View at Publisher · View at Google Scholar
  25. A. Dominguez-Rodriguez, P. Abreu-Gonzalez, and P. Avanzas, “The role of melatonin in acute myocardial infarction,” Frontiers in Bioscience, vol. 17, no. 7, pp. 2433–2441, 2011. View at Publisher · View at Google Scholar
  26. F. Fabbian, M. H. Smolensky, R. Tiseo et al., “Dipper and non-dipper blood pressure 24-Hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms,” Chronobiology International, 2012. In press.
  27. “Guidelines for the clinical use of 24 hour ambulatory blood pressure monitoring (ABPM) (JCS 2010)-Digest version,” Circulation Journal, vol. 76, no. 2, pp. 508–519, 2012. View at Publisher · View at Google Scholar
  28. R. C. Hermida, D. E. Ayala, A. Mojon, and J. R. Fernandez, “Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level-the “normotensive non-dipper” paradox,” Chronobiology International, 2012. In press.
  29. B. Lemmer, “The importance of circadian rhythms on drug response in hypertension and coronary heart disease-from mice and man,” Pharmacology and Therapeutics, vol. 111, no. 3, pp. 629–651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Simon, G. Abraham, and G. Cserep, “Pressor and subpressor angiotensin II administration. Two experimental models of hypertension,” The American Journal of Hypertension, vol. 8, no. 6, pp. 645–650, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Baltatu, J. A. Silva Jr., D. Ganten, and M. Bader, “The brain renin-angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy,” Hypertension, vol. 35, no. 1, pp. 409–412, 2000. View at Google Scholar · View at Scopus
  32. M. Schinke, O. Baltatu, M. Böhm et al., “Blood pressure reduction and diabetes insipidus in transgenic rats deficient in brain angiotensinogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3975–3980, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. B. J. A. Janssen, C. M. Tyssen, H. Duindam, and W. J. Rietveld, “Suprachiasmatic lesions eliminate 24-h blood pressure variability in rats,” Physiology and Behavior, vol. 55, no. 2, pp. 307–311, 1994. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Witte, A. Schnecko, R. M. Buijs et al., “Effects of SCN lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats,” Chronobiology International, vol. 15, no. 2, pp. 135–145, 1998. View at Google Scholar · View at Scopus
  35. R. Hardeland, “Melatonin in aging and disease-multiple consequences of reduced secretion, options and limits of treatment,” Aging and Disease, vol. 3, no. 2, pp. 149–225, 2012. View at Google Scholar
  36. M. Jonas, D. Garfinkel, N. Zisapel, M. Laudon, and E. Grossman, “Impaired nocturnal melatonin secretion in non-dipper hypertensive patients,” Blood Pressure, vol. 12, no. 1, pp. 19–24, 2003. View at Google Scholar · View at Scopus
  37. L. A. Campos, S. C. Afeche, R. Plehm et al., “Altered circadian rhythm reentrainment and pineal indoles in rats with low brain angiotensinogen,” Journal of Hypertension, vol. 20, p. 1086, 2002. View at Google Scholar
  38. N. Takeda and K. Maemura, “Circadian clock and cardiovascular disease,” Journal of Cardiology, vol. 57, no. 3, pp. 249–256, 2011. View at Publisher · View at Google Scholar
  39. K. Putnam, R. Shoemaker, F. Yiannikouris, and L. A. Cassis, “The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome,” The American Journal of Physiology, vol. 302, no. 6, pp. H1219–H1230, 2012. View at Publisher · View at Google Scholar
  40. G. Lastra-Lastra, J. R. Sowers, K. Restrepo-Erazo, C. Manrique-Acevedo, and G. Lastra-González, “Role of aldosterone and angiotensin II in insulin resistance: an update,” Clinical Endocrinology, vol. 71, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. F. B. Lima, U. F. Machado, I. Bartol et al., “Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats,” The American Journal of Physiology, vol. 275, no. 6, pp. E934–E941, 1998. View at Google Scholar · View at Scopus
  42. C. N. Borges-Silva, M. I. C. Alonso-Vale, S. M. Franzói-De-Moraes et al., “Pinealectomy impairs adipose tissue adaptability to exercise in rats,” Journal of Pineal Research, vol. 38, no. 4, pp. 278–283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. I. Cardoso Alonso-Vale, G. F. Anhê, C. N. Borges-Silva et al., “Pinealectomy alters adipose tissue adaptability to fasting in rats,” Metabolism, vol. 53, no. 4, pp. 500–506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. M. C. Picinato, E. P. Haber, A. R. Carpinelli, and J. Cipolla-Neto, “Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat,” Journal of Pineal Research, vol. 33, no. 3, pp. 172–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Zanquetta, P. M. Seraphim, D. H. Sumida, J. Cipolla-Neto, and U. F. Machado, “Calorie restriction reduces pinealectomy-induced insulin resistance by improving GLUT4 gene expression and its translocation to the plasma membrane,” Journal of Pineal Research, vol. 35, no. 3, pp. 141–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. F. B. Lima, D. H. Matsushita, N. S. Hell, M. S. Dolnikoff, M. M. Okamoto, and J. Cipolla Neto, “The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin,” Brazilian Journal of Medical and Biological Research, vol. 27, no. 4, pp. 995–1000, 1994. View at Google Scholar · View at Scopus
  47. G. F. Anhê, L. C. Caperuto, M. Pereira-Da-Silva et al., “In vivo activation of insulin receptor tyrosine kinase by melatonin in the rat hypothalamus,” Journal of Neurochemistry, vol. 90, no. 3, pp. 559–566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. D. D. Rasmussen, B. M. Boldt, C. W. Wilkinson, S. M. Yellon, and A. M. Matsumoto, “Daily melatonin administration at middle age suppresses male rat visceral fat, plasma leptin, and plasma insulin to youthful levels,” Endocrinology, vol. 140, no. 2, pp. 1009–1012, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. R. A. P. Garcia, S. C. Afeche, J. H. Scialfa et al., “Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland,” Life Sciences, vol. 82, no. 1-2, pp. 108–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. F. Pang, F. Tang, and P. L. Tang, “Alloxan-induced diabetes and the pineal gland: differential effects on the levels of pineal N-acetylserotonin, pineal melatonin, and serum melatonin,” Journal of Pineal Research, vol. 2, no. 1, pp. 79–85, 1985. View at Google Scholar · View at Scopus
  51. T. H. Champney, G. C. Brainard, B. A. Richardson, and R. J. Reiter, “Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster,” Comparative Biochemistry and Physiology A, vol. 76, no. 1, pp. 199–201, 1983. View at Google Scholar · View at Scopus
  52. T. H. Champney, A. P. Holtorf, C. M. Craft, and R. J. Reiter, “Hormonal modulation of pineal melatonin synthesis in rats and Syrian hamsters: effects of streptozotocin-induced diabetes and insulin injections,” Comparative Biochemistry and Physiology, vol. 83, no. 2, pp. 391–395, 1986. View at Google Scholar · View at Scopus
  53. A. Conti and G. J. Maestroni, “Role of the pineal gland and melatonin in the development of autoimmune diabetes in non-obese diabetic mice,” Journal of Pineal Research, vol. 20, no. 3, pp. 164–172, 1996. View at Google Scholar · View at Scopus
  54. E. Peschke, T. Frese, E. Chankiewitz et al., “Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status,” Journal of Pineal Research, vol. 40, no. 2, pp. 135–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Armagan, E. Uz, H. R. Yilmaz, S. Soyupek, T. Oksay, and N. Ozcelik, “Effects of melatonin on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rat testis,” Asian Journal of Andrology, vol. 8, no. 5, pp. 595–600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. P. L. Montilla, J. F. Vargas, I. F. Túnez et al., “Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin,” Journal of Pineal Research, vol. 25, no. 2, pp. 94–100, 1998. View at Google Scholar · View at Scopus
  57. A. Guven, O. Yavuz, M. Cam et al., “Effects of melatonin on streptozotocin-induced diabetic liver injury in rats,” Acta Histochemica, vol. 108, no. 2, pp. 85–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Winiarska, T. Fraczyk, D. Malinska, J. Drozak, and J. Bryla, “Melatonin attenuates diabetes-induced oxidative stress in rabbits,” Journal of Pineal Research, vol. 40, no. 2, pp. 168–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Kanter, H. Uysal, T. Karaca, and H. O. Sagmanligil, “Depression of glucose levels and partial restoration of pancreatic β-cell damage by melatonin in streptozotocin-induced diabetic rats,” Archives of Toxicology, vol. 80, no. 6, pp. 362–369, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. E. J. Sudnikovich, Y. Z. Maksimchik, S. V. Zabrodskaya et al., “Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats,” European Journal of Pharmacology, vol. 569, no. 3, pp. 180–187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Vural, T. Sabuncu, S. Oktay Arslan, and N. Aksoy, “Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats,” Journal of Pineal Research, vol. 31, no. 3, pp. 193–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Stebelová, I. Herichová, and M. Zeman, “Diabetes induces changes in melatonin concentrations in peripheral tissues of rat,” Neuroendocrinology Letters, vol. 28, no. 2, pp. 159–165, 2007. View at Google Scholar