Table of Contents Author Guidelines Submit a Manuscript
International Journal of Inflammation
Volume 2013, Article ID 780502, 9 pages
http://dx.doi.org/10.1155/2013/780502
Research Article

Evolution of the Macrophage CD163 Phenotype and Cytokine Profiles in a Human Model of Resolving Inflammation

1Eric Bywaters Centre for Vascular Inflammation, Faculty of Medicine, Imperial College London, London W12 0NN, UK
2Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
3Chronic Disease Research Centre, The University of the West Indies, Bridgetown 11115, Barbados

Received 26 February 2013; Accepted 7 April 2013

Academic Editor: Christopher D. Buckley

Copyright © 2013 Betsy J. Evans et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Gillitzer and M. Goebeler, “Chemokines in cutaneous wound healing,” Journal of Leukocyte Biology, vol. 69, no. 4, pp. 513–521, 2001. View at Google Scholar · View at Scopus
  2. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. S. J. Leibovich and R. Ross, “The role of the macrophage in wound repair: a study with hydrocortisone and antimacrophage serum,” American Journal of Pathology, vol. 78, no. 1, pp. 71–99, 1975. View at Google Scholar · View at Scopus
  4. Q. E. H. Low, I. A. Drugea, L. A. Duffner et al., “Wound healing in MIP-1α-/- and MCP-1-/- mice,” American Journal of Pathology, vol. 159, no. 2, pp. 457–463, 2001. View at Google Scholar · View at Scopus
  5. R. D. Stout, “Editorial: macrophage functional phenotypes: no alternatives in dermal wound healing?” Journal of Leukocyte Biology, vol. 87, no. 1, pp. 19–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. D. Dijkstra, E. A. Dopp, P. Joling, and G. Kraal, “The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3,” Immunology, vol. 54, no. 3, pp. 589–599, 1985. View at Google Scholar · View at Scopus
  7. G. Zwadlo, R. Voegeli, K. Schulze Osthoff, and C. Sorg, “A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process,” Experimental Cell Biology, vol. 55, no. 6, pp. 295–304, 1987. View at Google Scholar · View at Scopus
  8. D. W. Gilroy, P. R. Colville-Nash, S. McMaster, D. A. Sawatzky, D. A. Willoughby, and T. Lawrence, “Inducible cyclooxygenase-derived 15-deoxyΔ12-14PGJ 2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis,” FASEB Journal, vol. 17, no. 15, pp. 2269–2271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Yagnik, B. J. Evans, O. Florey, J. C. Mason, R. C. Landis, and D. O. Haskard, “Macrophage release of transforming growth factor β1 during resolution of monosodium urate monohydrate crystal-induced inflammation,” Arthritis and Rheumatism, vol. 50, no. 7, pp. 2273–2280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Boyle, H. A. Harrington, E. Piper et al., “Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype,” American Journal of Pathology, vol. 174, no. 3, pp. 1097–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. V. Finn, M. Nakano, R. Polavarapu et al., “Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques,” Journal of the American College of Cardiology, vol. 59, no. 2, pp. 166–177, 2012. View at Google Scholar
  12. J. J. Boyle, “Heme and haemoglobin direct macrophage Mhem phenotype and counter foam cell formation in areas of intraplaque haemorrhage,” Current Opinion in Lipidology, vol. 23, no. 5, pp. 453–461, 2012. View at Google Scholar
  13. E. Engelhardt, A. Toksoy, M. Goebeler, S. Debus, E. B. Bröcker, and R. Gillitzer, “Chemokines IL-8, GROα, MCP-1, IP-10, and mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing,” American Journal of Pathology, vol. 153, no. 6, pp. 1849–1860, 1998. View at Google Scholar · View at Scopus
  14. T. J. Fahey, B. Sherry, K. J. Tracey et al., “Cytokine production in a model of wound healing: the appearance of MIP-1, MIP-2, cachectin/TNF and IL-I,” Cytokine, vol. 2, no. 2, pp. 92–99, 1990. View at Google Scholar · View at Scopus
  15. L. A. DiPietro, M. G. Reintjes, Q. E. H. Low, B. Levi, and R. L. Gamelli, “Modulation of macrophage recruitment into wounds by monocyte chemoattractant protein-1,” Wound Repair and Regeneration, vol. 9, no. 1, pp. 28–33, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Heinrich, K. A. N. Messingham, M. S. Gregory et al., “Elevated monocyte chemoattractant protein-1 levels following thermal injury precede monocyte recruitment to the wound site and are controlled, in part, by tumor necrosis factor-α,” Wound Repair and Regeneration, vol. 11, no. 2, pp. 110–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. L. A. DiPietro, M. Burdick, Q. E. Low, S. L. Kunkel, and R. M. Strieter, “Mip-1α as a critical macrophage chemoattractant in murine wound repair,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1693–1698, 1998. View at Google Scholar · View at Scopus
  18. R. E. Honkanen, “Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A,” FEBS Letters, vol. 330, no. 3, pp. 283–286, 1993. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Pierard-Franchimont and G. E. Pierard, “Cantharidin-induced acantholysis,” American Journal of Dermatopathology, vol. 10, no. 5, pp. 419–423, 1988. View at Google Scholar · View at Scopus
  20. T. A. Tromovitch, “Cantharadin,” Journal of the American Medical Association, vol. 215, no. 4, p. 640, 1971. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. Day, M. Harbord, A. Forbes, and A. W. Segal, “Cantharidin blisters: a technique for investigating leukocyte trafficking and cytokine production at sites of inflammation in humans,” Journal of Immunological Methods, vol. 257, no. 1-2, pp. 213–220, 2001. View at Google Scholar · View at Scopus
  22. T. V. Ivetic, B. Hrvacic, M. Bosnar et al., “Cantharidin-induced inflammation in mouse ear model for translational research of novel anti-inflammatories,” Translational Research, vol. 160, no. 2, pp. 137–145, 2012. View at Google Scholar
  23. B. J. Evans, A. McDowall, P. C. Taylor, N. Hogg, D. O. Haskard, and R. C. Landis, “Shedding of lymphocyte function-associated antigen-1 (LFA-1) in a human inflammatory response,” Blood, vol. 107, no. 9, pp. 3593–3599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Dransfield, A. M. Buckle, J. S. Savill, A. McDowall, C. Haslett, and N. Hogg, “Neutrophil apoptosis is associated with a reduction in CD16 (FcγRIII) expression,” Journal of Immunology, vol. 153, no. 3, pp. 1254–1263, 1994. View at Google Scholar · View at Scopus
  25. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Hübner, M. Brauchle, H. Smola, M. Madlener, R. Fässler, and S. Werner, “Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice,” Cytokine, vol. 8, no. 7, pp. 548–556, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Morris, M. Stables, P. Colville-Nash et al., “Dichotomy in duration and severity of acute inflammatory responses in humans arising from differentially expressed proresolution pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8842–8847, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. L. W. Tyler, K. Matossian, R. Todd, G. T. Gallagher, R. R. White, and D. T. W. Wong, “Eosinophil-derived transforming growth factors (TGF-α and TGF-β1) in human periradicular lesions,” Journal of Endodontics, vol. 25, no. 9, pp. 619–624, 1999. View at Google Scholar · View at Scopus
  29. D. T. W. Wong, R. B. Donoff, J. Yang et al., “Sequential expression of transforming growth factors α and β1 by eosinophils during cutaneous wound healing in the hamster,” American Journal of Pathology, vol. 143, no. 1, pp. 130–142, 1993. View at Google Scholar · View at Scopus
  30. M. W. N. Harbord, D. J. B. Marks, A. Forbes, S. L. Bloom, R. M. Day, and A. W. Segal, “Impaired neutrophil chemotaxis in Crohn's disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor,” Alimentary Pharmacology and Therapeutics, vol. 24, no. 4, pp. 651–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Hayashida, W. C. Parks, and W. P. Pyong, “Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines,” Blood, vol. 114, no. 14, pp. 3033–3043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Angus McQuibban, J. H. Gong, J. P. Wong, J. L. Wallace, I. Clark-Lewis, and C. M. Overall, “Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo,” Blood, vol. 100, no. 4, pp. 1160–1167, 2002. View at Google Scholar · View at Scopus
  33. A. Mortier, D. J. Van, and P. Proost, “Overview of the mechanisms regulating chemokine activity and availability,” Immunology Letters, vol. 145, no. 1-2, pp. 2–9, 2012. View at Google Scholar
  34. D. T. Cromack, M. B. Sporn, A. B. Roberts, M. J. Merino, L. L. Dart, and J. A. Norton, “Transforming growth factor β levels in rat wound chambers,” Journal of Surgical Research, vol. 42, no. 6, pp. 622–628, 1987. View at Google Scholar · View at Scopus
  35. M. F. Siqueira, J. Li, L. Chehab et al., “Impaired wound healing in mouse models of diabetes is mediated by TNF-α dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1),” Diabetologia, vol. 53, no. 2, pp. 378–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Goren, E. Müller, J. Pfeilschifter, and S. Frank, “Severely impaired insulin signaling in chronic wounds of diabetic ob/ob mice: a potential role of tumor necrosis factor-α,” American Journal of Pathology, vol. 168, no. 3, pp. 765–777, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Gretzer, L. Emanuelsson, E. Liljensten, and P. Thomsen, “The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials,” Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 6, pp. 669–687, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Buechler, M. Ritter, E. Orsó, T. Langmann, J. Klucken, and G. Schmitz, “Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli,” Journal of Leukocyte Biology, vol. 67, no. 1, pp. 97–103, 2000. View at Google Scholar · View at Scopus
  39. J. M. Daley, S. K. Brancato, A. A. Thomay, J. S. Reichner, and J. E. Albina, “The phenotype of murine wound macrophages,” Journal of Leukocyte Biology, vol. 87, no. 1, pp. 59–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Philippidis, J. C. Mason, B. J. Evans et al., “Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery,” Circulation Research, vol. 94, no. 1, pp. 119–126, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. D. J. Schaer and A. I. Alayash, “Clearance and control mechanisms of hemoglobin from cradle to grave,” Antioxidants and Redox Signaling, vol. 12, no. 2, pp. 181–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. J. Boyle, M. Johns, T. Kampfer et al., “Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection,” Circulation Research, vol. 110, no. 1, pp. 20–33, 2012. View at Google Scholar
  43. J. J. Boyle, M. Johns, J. Lo et al., “Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 11, pp. 2685–2691, 2011. View at Google Scholar
  44. B. J. Evans, D. O. Haskard, J. R. Finch, I. R. Hambleton, R. C. Landis, and K. M. Taylor, “The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 5, pp. 999–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. C. D. Buckley, D. W. Gilroy, C. N. Serhan, B. Stockinger, and P. P. Tak, “The resolution of inflammation,” Nature Reviews Immunology, vol. 13, no. 1, pp. 59–66, 2013. View at Google Scholar