Table of Contents Author Guidelines Submit a Manuscript
International Journal of Photoenergy
Volume 2012 (2012), Article ID 169829, 16 pages
http://dx.doi.org/10.1155/2012/169829
Review Article

Crystal Growth Behaviors of Silicon during Melt Growth Processes

Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

Received 31 August 2011; Accepted 29 December 2011

Academic Editor: Teh Tan

Copyright © 2012 Kozo Fujiwara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is imperative to improve the crystal quality of Si multicrystal ingots grown by casting because they are widely used for solar cells in the present and will probably expand their use in the future. Fine control of macro- and microstructures, grain size, grain orientation, grain boundaries, dislocation/subgrain boundaries, and impurities, in a Si multicrystal ingot, is therefore necessary. Understanding crystal growth mechanisms in melt growth processes is thus crucial for developing a good technology for producing high-quality Si multicrystal ingots for solar cells. In this review, crystal growth mechanisms involving the morphological transformation of the crystal-melt interface, grain boundary formation, parallel-twin formation, and faceted dendrite growth are discussed on the basis of the experimental results of in situ observations.