Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 141298, 9 pages
http://dx.doi.org/10.1155/2013/141298
Research Article

Effect of Gamma-Irradiated Recycled Low-Density Polyethylene on the High- and Low-Temperature Properties of Bitumen

1Transportation Division, Department of Civil Engineering, Faculty of Engineering, Ege University, Izmir, Turkey
2Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
3Department of Civil Engineering, Ege University, Izmir, Turkey
4Institute of Nuclear Research of the NASU, Kyiv, Ukraine

Received 29 March 2013; Accepted 3 June 2013

Academic Editor: Gonzalo Martínez-Barrera

Copyright © 2013 Perviz Ahmedzade et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Gershkoff, J. Carswell, and J. C. Nicholls, Rheological Properties of Polymer-Modified Binders for Use in Rolled Asphalt Wearing Course, Transport Research Laboratory, Crowthorne, UK, 1997.
  2. U. Isacsson, “Laboratory investigation of polymer modified bitumens,” Journal of the Association of Asphalt Paving Technology, vol. 68, pp. 35–63, 1999. View at Google Scholar · View at Scopus
  3. G. D. Airey, “Rheological evaluation of ethylene vinyl acetate polymer modified bitumens,” Construction and Building Materials, vol. 16, no. 8, pp. 473–487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pérez-Lepe, F. J. Martínez-Boza, C. Gallegos, O. González, M. E. Muñoz, and A. Santamaría, “Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen,” Fuel, vol. 82, no. 11, pp. 1339–1348, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. García-Morales, P. Partal, F. J. Navarro, F. Martínez-Boza, M. R. Mackley, and C. Gallegos, “The rheology of recycled EVA/LDPE modified bitumen,” Rheologica Acta, vol. 43, no. 5, pp. 482–490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, “Asphalt modification with different polyethylene-based polymers,” European Polymer Journal, vol. 41, no. 12, pp. 2831–2844, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Z. Habib, I. Kamaruddin, M. Napiah, and I. M. Tan, “Rheological properties of polyethylene and polypropylene modified bitumen,” International Journal Civil and Environmental Engineering, vol. 3, pp. 96–100, 2011. View at Google Scholar · View at Scopus
  8. C. F. Ouyang, Q. Gao, Y. T. Shi, and X. Q. Shan, “Compatibilizer in waste tire powder and low-density polyethylene blends and the blends modified asphalt,” Journal of Applied Polymer Science, vol. 123, no. 1, pp. 485–492, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. García-Morales, P. Partal, F. J. Navarro, and C. Gallegos, “Effect of waste polymer addition on the rheology of modified bitumen,” Fuel, vol. 85, no. 7-8, pp. 936–943, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Z. Ismail and E. A. AL-Hashmi, “Use of waste plastic in concrete mixture as aggregate replacement,” Waste Management, vol. 28, no. 11, pp. 2041–2047, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. J. Navarro, P. Partal, M. García-Morales et al., “Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis,” Journal of Industrial and Engineering Chemistry, vol. 15, no. 4, pp. 458–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. H. Gad, M. M. Magida, and H. H. El-Nahas, “Effect of ionizing irradiation on the thermal blend of waste low density polyethylene/ethylene vinyl acetate/bitumen for some industrial applications,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 6, pp. 1019–1024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Wegan, Sampling for Microscopy-Test Procedure, Danish Road Institute, 1996.
  14. J. Read and D. Whiteoak, The Shell Bitumen Handbook, Shell Bitumen, Thomas Telford, London, UK, 5th edition, 2003.
  15. H. U. Bahia and D. A. Anderson, “Strategic highway research program binder rheological parameters: background and comparison with conventional properties,” Transportation Research Record, no. 1488, pp. 32–39, 1995. View at Google Scholar · View at Scopus
  16. J. P. Zaniewski and M. E. Pumphrey, Evaluation of Performance Graded Asphalt Binder Equipment and Testing Protocol, West Virginia University, 2004.
  17. G. D. Airey, “Rheological properties of styrene butadiene styrene polymer modified road bitumens,” Fuel, vol. 82, no. 14, pp. 1709–1719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Liu, W. Cao, J. Fang, and S. Shang, “Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt,” Construction and Building Materials, vol. 23, no. 7, pp. 2701–2708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. I. A. Wahhab, I. A. Al-Dubabe, I. M. Asi, and M. F. Ali, “Performance-based characterization of Arab asphalt,” Building and Environment, vol. 33, no. 6, pp. 375–383, 1998. View at Google Scholar · View at Scopus