Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 451398, 8 pages
http://dx.doi.org/10.1155/2013/451398
Research Article

Decoloring Methyl Orange under Sunlight by a Photocatalytic Membrane Reactor Based on ZnO Nanoparticles and Polypropylene Macroporous Membrane

Bing Hu,1,2 Jin Zhou,1,2 and Xiu-Min Wu2

1Department of Material and Chemistry Engineering, Chizhou University, Chizhou, Anhui 247000, China
2Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 1 East Beijing Road, Wuhu, Anhui 241000, China

Received 2 February 2013; Accepted 10 March 2013

Academic Editor: Hai-Yin Yu

Copyright © 2013 Bing Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Akbari, J. C. Remigy, and P. Aptel, “Treatment of textile dye effluent using a polyamide-based nanofiltration membrane,” Chemical Engineering and Processing, vol. 41, no. 7, pp. 601–609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. V. K. Gupta, R. Jain, A. Mittal, M. Mathur, and S. Sikarwar, “Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst,” Journal of Colloid and Interface Science, vol. 309, no. 2, pp. 464–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. V. K. Gupta, R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava, “Removal of the hazardous dye-Tartrazine by photodegradation on titanium dioxide surface,” Materials Science and Engineering C, vol. 31, no. 5, pp. 1062–1067, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. V. K. Gupta, R. Jain, A. Mittal et al., “Photo-catalytic degradation of toxic dye amaranth on TiO(2)/UV in aqueous suspensions,” Materials Science and Engineering C, vol. 32, no. 1, pp. 12–17, 2012. View at Google Scholar
  5. V. K. Gupta, R. Jain, S. Agarwal, A. Nayak, and M. Shrivastava, “Photodegradation of haz- ardous dye quinoline yellow catalyzed by TiO2,” Journal of Colloid and Interface Sciences, vol. 366, no. 1, pp. 135–140, 2012. View at Google Scholar
  6. V. K. Gupta, R. Jain, S. Agarwal, and M. Shrivastava, “Kinetics of photo-catalytic degradation of hazardous dye Tropaeoline 000 using UV/TiO2 in a UV reactor,” Colloids and Surfaces A, vol. 378, no. 1–3, pp. 22–26, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang, and B. Zou, “Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres,” Materals Letters, vol. 66, no. 1, pp. 72–75, 2012. View at Google Scholar
  8. R. Mohan, K. Krishnamoorthy, and S. J. Kim, “Enhanced photocatalytic activity of Cu-doped ZnO nanorods,” Solid State Communications, vol. 152, no. 5, pp. 375–380, 2012. View at Google Scholar
  9. R. Selvin, H. L. Hsu, N. S. Arul, and S. Mathew, “Comparison of photo-catalytic efficiency of various metal oxide photo-catalysts for the degradation of methyl orange,” Science of Advanced Materials, vol. 2, no. 1, pp. 58–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Abdollahi, A. H. Abdullah, Z. Zainal, and N. A. Yusof, “Photodegradation of m-cresol by zinc oxide under visible-light irradiation,” International Journal of Chemistry, vol. 3, no. 3, pp. 31–43, 2011. View at Google Scholar
  11. Y. Abdollahi, A. H. Abdullah, Z. Zainal, and N. A. Yusof, “Photocatalytic Degradation of p-Cresol by Zinc Oxide under UV Irradiation,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 302–315, 2012. View at Google Scholar
  12. Y. Gou, D. Chen, and Z. Su, “Photocatalyst of nanometer TiO2/conjugated polymer complex employed for depigmentation of methyl orange,” Applied Catalysis A, vol. 261, no. 1, pp. 15–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. R. Pouretedal and M. H. Keshavarz, “Synthesis and characterization of Zn1-XCuXS and Zn1-XNiXS nanoparticles and their applications as photocatalyst in Congo red degradation,” Journal of Alloys and Compounds, vol. 501, no. 1, pp. 130–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zhang, L. Zhang, L. H. Cheng et al., “Extracorporeal endotoxin removal by novel l-serine grafted PVDF membrane modules,” Journal of Membrane Science, vol. 405, no. 1, pp. 104–112, 2012. View at Google Scholar
  15. R. A. Damodar, S. J. You, and G. W. Chiou, “Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment,” Journal of Hazardous Materals, vol. 203, no. 15, pp. 348–356, 2013. View at Google Scholar
  16. G. Zhang, J. Zhang, L. Wang, Q. Meng, and J. Wang, “Fouling mechanism of low-pressure hollow fiber membranes used in separating nanosized photocatalysts,” Journal of Membrane Science, vol. 389, no. 1, pp. 532–543, 2012. View at Google Scholar
  17. J. Marto, P. S. Marcos, T. Trindade, and J. A. Labrincha, “Photocatalytic decolouration of Orange II by ZnO active layers screen-printed on ceramic tiles,” Journal of Hazardous Materials, vol. 163, no. 1, pp. 36–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, “Strategies of making TiO2 and ZnO visible light active,” Journal of Hazardous Materials, vol. 170, no. 2-3, pp. 560–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Y. Yu, J. Zhou, J. S. Gu, and S. Yang, “Manipulating membrane permeability and protein rejection of UV-modified polypropylene macroporous membrane,” Journal of Membrane Science, vol. 364, no. 1-2, pp. 203–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Hu, L. Wang, X. M. Wu, S. Yang, J. S. Gu, and H. Y. Yu, “Low protein fouling polypropylene membrane prepared by photoinduced reversible addition-fragmentation chain transfer polymerization,” Journal of Applied Polymer Science, vol. 123, no. 6, pp. 3668–3674, 2011. View at Google Scholar
  21. H. Y. Yu, Z. K. Xu, Q. Yang, M. X. Hu, and S. Y. Wang, “Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid,” Journal of Membrane Science, vol. 281, no. 1-2, pp. 658–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Chiefari, Y. K. Chong, F. Ercole et al., “Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process,” Macromolecules, vol. 31, no. 16, pp. 5559–5562, 1998. View at Google Scholar · View at Scopus
  23. D. Zhang, H. Xu, M. Xue, W. Xu, and V. Tarasov, “Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process,” Frontiers of Chemical Engineering in China, vol. 2, no. 3, pp. 319–324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Yang, J. S. Gu, H. Y. Yu et al., “Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor,” Separation and Purification Technology, vol. 83, no. 15, pp. 157–165, 2011. View at Google Scholar
  25. T. Toshinori, K. Takehiro, Y. Tomohisa, and A. Masashi, “A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes,” Journal of Membrane Science, vol. 280, no. 1-2, pp. 156–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. S. Gu, H. Y. Yu, L. Huang et al., “Chain-length dependence of the antifouling characteristics of the glycopolymer-modified polypropylene membrane in an SMBR,” Journal of Membrane Science, vol. 326, no. 1, pp. 145–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Brayner, S. A. Dahoumane, C. Yéprémian et al., “ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies,” Langmuir, vol. 26, no. 9, pp. 6522–6528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Hong, T. Pan, J. Qian, and H. Li, “Synthesis and surface modification of ZnO nanoparticles,” Chemical Engineering Journal, vol. 119, no. 2-3, pp. 71–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. X. Hu, Q. Yang, and Z.-K. Xu, “Enhancing the hydrophilicity of polypropylene microporous membranes by the grafting of 2-hydroxyethyl methacrylate via a synergistic effect of photoinitiators,” Journal of Membrane Science, vol. 285, no. 1-2, pp. 196–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. S. Wavhal and E. R. Fisher, “Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling,” Langmuir, vol. 19, no. 1, pp. 79–85, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Yang, Z. K. Xu, Z. W. Dai, J. L. Wang, and M. Ulbricht, “Surface modification of polypropylene microporous membranes with a novel glycopolymer,” Chemistry of Materials, vol. 17, no. 11, pp. 3050–3058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Y. Kuan, M. H. Hon, J. M. Chou, and I. C. Leu, “Wetting characteristics on micro/nanostructured zinc oxide coatings,” Journal of the Electrochemical Society, vol. 156, no. 2, pp. J32–J36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, “Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria,” Journal of Physics D, vol. 42, no. 22, Article ID 225305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Wang, D. Chen, H. Zhang, J. Z. Zhang, and J. Li, “Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8850–8855, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Y. Hong, J. H. Li, L. L. Chen et al., “Synthesis, surface modification and photocatalytic property of ZnO nanoparticles,” Powder Technology, vol. 189, no. 3, pp. 426–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. B. Li, G. B. Gu, G. F. Huang, Y. L. Gu, and H. F. Wan, “TiO2-assisted photo-catalysis degradation process of dye chemicals,” Journal of Environmental Sciences, vol. 13, no. 1, pp. 64–68, 2001. View at Google Scholar · View at Scopus
  37. J. Liqiang, X. Baifu, Y. Fulong et al., “Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2,” Applied Catalysis A, vol. 275, no. 1-2, pp. 49–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Xu, Y. Ao, D. Fu, and C. Yuan, “Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light,” Applied Surface Science, vol. 254, no. 10, pp. 3033–3038, 2008. View at Publisher · View at Google Scholar · View at Scopus