Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 514951, 8 pages
http://dx.doi.org/10.1155/2013/514951
Research Article

Manufacture of Partially Biodegradable Composite Materials Based on PLA-Tires Powder: Process and Characterization

1Centro de Investigación Científica de Yucatán, Unidad de Materiales, Calle 43, No. 130, Colonia Chuburná de Hidalgo, CP 97200 Mérida, YUC, Mexico
2Tokyo Metropolitan University, Mechanical Engineering Department, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
3Instituto Tecnológico Superior de Calkiní en el Estado de Campeche, Avenida Ah Canul SN por Carretera Federal, CP 24900 Calkiní, CAM, Mexico

Received 21 February 2013; Accepted 16 April 2013

Academic Editor: Osman Gencel

Copyright © 2013 Carlos Rolando Rios-Soberanis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Ayrilmis, U. Buyuksari, and E. Avci, “Utilization of waste tire rubber in the manufacturing of particleboard,” Materials and Manufacturing Processes, vol. 24, no. 6, pp. 688–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Martin and L. Avérous, “Plasticization and properties of biodegradable multiphase systems,” Polymer, vol. 42, no. 14, pp. 6209–6219, 2001. View at Google Scholar · View at Scopus
  3. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, “Mechanical properties of PLA composites with man-made cellulose and abaca fibres,” Composites A, vol. 40, no. 4, pp. 404–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. E. Suyatma, A. Copinet, L. Tighzert, and V. Coma, “Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends,” Journal of Polymers and the Environment, vol. 12, no. 1, pp. 1–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Jiang, M. P. Wolcott, and J. Zhang, “Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends,” Biomacromolecules, vol. 7, no. 1, pp. 199–207, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. T. Lim, R. Auras, and M. Rubino, “Processing technologies for poly(lactic acid),” Progress in Polymer Science, vol. 33, pp. 820–852, 2008. View at Google Scholar
  7. M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, “The basic properties of poly(lactic acid) produced by the direct condensation polymerization of lactic acid,” Journal of Environmental Polymer Degradation, vol. 3, no. 4, pp. 225–234, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhang, S. H. Goh, and S. Y. Lee, “Miscibility and phase behavior of poly(D,L-lactide)/poly-(p-vinylphenol) blends,” Journal of Applied Polymer Science, vol. 70, no. 4, pp. 811–816, 1998. View at Google Scholar · View at Scopus
  9. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, “High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties,” Polymer, vol. 37, no. 26, pp. 5849–5857, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mohamed, S. H. Gordon, and G. Biresaw, “Polydactic acid/polystyrene bioblends characterized by thermogravimetric analysis, differential scanning calorimetry, and photoacoustic infrared spectroscopy,” Journal of Applied Polymer Science, vol. 106, no. 3, pp. 1689–1696, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Raghavan, H. Huynh, and C. F. Ferraris, “Workability, mechanical properties, and chemical stability of a recycled tyre rubber-filled cementitious composite,” Journal of Materials Science, vol. 33, no. 7, pp. 1745–1752, 1998. View at Google Scholar · View at Scopus
  12. F. A. Aisien, F. K. Hymore, and R. O. Ebewele, “Potential application of recycled rubber in oil pollution control,” Environmental Monitoring and Assessment, vol. 85, no. 2, pp. 175–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, “Progress in used tyres management in the European Union: a review,” Waste Manage, vol. 32, pp. 1742–1751, 2012. View at Google Scholar
  14. M. Miranda, F. Pinto, I. Gulyurtlu, and I. Cabrita, “Pyrolysis of rubber tyre wastes: a kinetic study,” Fuel, vol. 103, pp. 542–552, 2013. View at Google Scholar
  15. ASTM D882-12 Standard Test Method for Tensile Properties of Thin Plastic Sheeting, American Society for Testing Materials, Philadelphia, Pa, USA.
  16. ASTM D256-10 Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, American Society for Testing Materials, Philadelphia, Pa, USA.
  17. S. Galvagno, S. Casu, M. Martino, E. Di Palma, and S. Portofino, “Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis,” Journal of Thermal Analysis and Calorimetry, vol. 88, no. 2, pp. 507–514, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. M. Stefani, D. Garcia, J. Lopez, and A. Jimenez, “Thermogravimetric analysis of composites obtained from sintering of rice husk-scrap tire mixtures,” Journal of Thermal Analysis and Calorimetry, vol. 81, pp. 315–320, 2005. View at Google Scholar
  19. R. Mis-Fernandez, J. A. Azamar-Barrios, and C. R. Rios-Soberanis, “Characterization of the powder obtained from wasted tires reduced by pyrolysis and thermal shock process,” Journal of Applied Research and Technology, vol. 6, pp. 95–104, 2008. View at Google Scholar
  20. X. Chen, J. Kalish, and S. H. Hsu, “Structure Evolution of a α'-Phase Poly(lactic acid),” Journal of Polymer Science, vol. 49, pp. 1446–1454, 2011. View at Google Scholar
  21. T. Tábi, I. E. Sajó, F. Szabó, A. S. Luyt, and J. G. Kovács, “Crystalline structure of annealed polylactic acid and its relation to processing,” eXPRESS Polymer Letters, vol. 4, pp. 659–668, 2010. View at Google Scholar
  22. X. Cao, A. Mohamed, S. H. Gordon, J. L. Willett, and D. J. Sessa, “DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends,” Thermochimica Acta, vol. 406, no. 1-2, pp. 115–127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Semba, K. Kitagawa, U. S. Ishiaku, and H. Hamada, “The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends,” Journal of Applied Polymer Science, vol. 101, no. 3, pp. 1816–1825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. H. A. Schneider, “Glass transition behavior of compatible polymer blends,” Polymer, vol. 30, pp. 771–779, 1989. View at Google Scholar
  25. M. Shibata, S. Oyamada, S. I. Kobayashi, and D. Yaginuma, “Mechanical properties and biodegradability of green composites based on biodegradable polyesters and lyocell fabric,” Journal of Applied Polymer Science, vol. 92, no. 6, pp. 3857–3863, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. C. Willemse, A. Speijer, A. E. Langeraar, and A. Posthuma De Boer, “Tensile moduli of co-continuous polymer blends,” Polymer, vol. 40, no. 24, pp. 6645–6650, 1999. View at Google Scholar · View at Scopus