Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013 (2013), Article ID 751056, 9 pages
http://dx.doi.org/10.1155/2013/751056
Research Article

Electrochemical Evaluation of a Recycled Copolymer Coating for Cultural Heritage Conservation Purposes

1Facultad de Ingeniería, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, 04510 Mexico, DF, Mexico
2Facultad de Química, Universidad Nacional Autónoma de Mexico, Circuito Exterior s/n Ciudad Universitaria, 04510 Mexico, DF, Mexico
3CIICAp, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, MOR, Mexico

Received 28 March 2013; Revised 19 June 2013; Accepted 25 June 2013

Academic Editor: Enrique Vigueras Santiago

Copyright © 2013 Marco Hernández-Escampa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Torraca, Porous Building Materials: Materials Science for Architectural Conservation, Iccrom, Rome, Italy, 1982.
  2. G. W. Scherer, R. Flatt, and G. Wheeler, “Materials science research for the conservation of sculpture and monuments,” MRS Bulletin, vol. 26, no. 1, pp. 44–50, 2001. View at Google Scholar · View at Scopus
  3. F. Rodríguez-Acuña, J. Genescá, and J. Uruchurtu, “Electrochemical evaluation of patinas formed on nineteenth century bronze bells,” Journal of Applied Electrochemistry, vol. 40, no. 2, pp. 311–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Hernandez-Escampa, J. Gonzalez, and J. Uruchurtu-Chavarin, “Electrochemical assessment of the restoration and conservation of a heavily corroded archaeological iron artifact,” Journal of Applied Electrochemistry, vol. 40, no. 2, pp. 345–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. M. Salgado, J. U. Chavarín, and D. M. Cruz, “Observation of copper corrosion oxide products reduction in metallic samples by means of digital image correlation,” International Journal of Electrochemical Science, vol. 7, no. 2, pp. 1107–1117, 2012. View at Google Scholar · View at Scopus
  6. H. H. Coghlan, E. Voce, and T. K. Penniman, “Notes on the prehistoric metallurgy of copper and bronze in the Old World,” Occasional Papers on Technology, no. 4, pp. 1–131, 1951. View at Google Scholar
  7. C. Chiavari, K. Rahmouni, H. Takenouti, S. Joiret, P. Vermaut, and L. Robbiola, “Composition and electrochemical properties of natural patinas of outdoor bronze monuments,” Electrochimica Acta, vol. 52, no. 27, pp. 7760–7769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Pilz and H. Römich, “Sol-gel derived coatings for outdoor bronze conservation,” Journal of Sol-Gel Science and Technology, vol. 8, no. 1-3, pp. 1071–1075, 1997. View at Google Scholar · View at Scopus
  9. B. Appelbaum, “Criteria for treatment: reversibility,” Journal of the American Institute for Conservation, vol. 26, no. 2, pp. 65–73, 1987. View at Google Scholar
  10. Y. Sakata, A. Uddin, A. Muto et al., “Thermal and catalytic degradation of municipal waste plastics into fuel oil,” Polymer Recycling, vol. 2, no. 4, pp. 309–315, 1996. View at Google Scholar · View at Scopus
  11. S. Ozdogan, S. Uygur, and N. Egrican, “Formation and dispersion of toxic combustion byproducts from small-scale combustion systems,” Energy, vol. 22, no. 7, pp. 681–692, 1997. View at Google Scholar · View at Scopus
  12. F. Radtke, R. Köppel, and A. Baiker, “Formation of undesired by-products in deNOx catalysis by hydrocarbons,” Catalysis Today, vol. 26, no. 2, pp. 159–167, 1995. View at Google Scholar · View at Scopus
  13. M. D. Wolkowicz and S. K. Gaggar, “Effect of thermal aging on impact strength acrylonitrile-butadiene-styrene (ABS) terpolymer,” Polymer Engineering and Science, vol. 21, no. 9, pp. 571–575, 1981. View at Google Scholar · View at Scopus
  14. B. D. Gesner, “Environmental surface effects on ABS resins,” Journal of Applied Polymer Science, vol. 9, no. 11, Article ID 10.1002/app.1965.070091117, pp. 3701–3706, 1965. View at Google Scholar
  15. J. Shimada and K. Kabuki, “The mechanism of oxidative degradation of ABS resin. Part II: the mechanism of photooxidative degradation,” Journal of Applied Polymer Science, vol. 12, no. 4, pp. 671–682, 1968. View at Publisher · View at Google Scholar
  16. M. G. Wyzgoski, “Effects of oven aging on ABS, poly (acrylonitrile-butadiene-styrene),” Polymer Engineering and Science, vol. 16, no. 4, pp. 265–269, 1976. View at Google Scholar · View at Scopus
  17. S. R. Salman and N. D. Al-Shama'a, “Effect of thermal aging on the optical properties of ABS plastics,” Polymer-Plastics Technology and Engineering, vol. 30, no. 4, pp. 343–349, 1991. View at Google Scholar · View at Scopus
  18. J. Uruchurtu-Chavarin and J. M. Malo, “Electrochemical noise as a powerful electrochemical technique for corrosion studies,” Trends in Corrosion Research, vol. 2, pp. 49–58, 1997. View at Google Scholar
  19. “Standard practice for verification of algorithm and equipment for electrochemical impedance measurements,” ASTM G 106-89, 2004.
  20. http://jp.fujitsu.com/group/fql/en/services/analysis/method/ftir/.
  21. R. Krache and I. Debbah, “Some mechanical and thermal properties of PC/ABS blends,” Materials Sciences and Applications, vol. 2, pp. 404–410, 2011. View at Google Scholar
  22. G. Reena, S. Sangita, and K. Verinder, “Ft-ir studies of e-plastic obtained from obsolete computers,” Journal of Chemical and Pharmaceutical Research, vol. 3, no. 5, pp. 660–667, 2011. View at Google Scholar · View at Scopus
  23. M. Hernández, J. Genescá, J. Uruchurtu, and A. Barba, “Correlation between electrochemical impedance and noise measurements of waterborne coatings,” Corrosion Science, vol. 51, no. 3, pp. 499–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Morcillo, M. E. M. Almeida, B. M. Rosales, M. Marrocos, and J. Uruchurtu, Corrosión y Protección de Metales en las Atmósferas de Iberoamérica, CYTED, Madrid, Spain, 1999.
  25. L. Mariaca-Rodríguez, J. Genesca-Llongueras, J. Uruchurtu-Chavarin, and L. S. Hernández, Corrosividad Atmosférica (MICAT-México), Plaza y Valdes, México, Mexico, 1999.
  26. C. Menchaca, I. Castañeda, A. Soto-Quintero et al., “Characterization of a “smart” hybrid varnish electrospun nylon benzotriazole copper corrosion protection coating,” International Journal of Corrosion, vol. 2012, Article ID 925958, 10 pages, 2012. View at Publisher · View at Google Scholar
  27. T. Kosec, D. K. Merl, and I. Milošev, “Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution,” Corrosion Science, vol. 50, no. 7, pp. 1987–1997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Finšgar and I. Milošev, “Inhibition of copper corrosion by 1,2,3-benzotriazole: a review,” Corrosion Science, vol. 52, no. 9, pp. 2737–2749, 2010. View at Publisher · View at Google Scholar · View at Scopus