Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 892547, 12 pages
http://dx.doi.org/10.1155/2013/892547
Research Article

Polyurethane-Keratin Membranes: Structural Changes by Isocyanate and pH, and the Repercussion on Cr(VI) Removal

1Posgrado en Ciencia de Materiales, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Esquina, Paseo Tollocan, 50120 Toluca, MEX, Mexico
2Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Facultad de Química, Universidad Autónoma del Estado de México, Km. 14.5 de la carretera Toluca-Atlacomulco, 50200 San Cayetano, MEX, Mexico
3División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Querétaro, Avenida Tecnológico s/n, Esquina Gral. Mariano Escobedo, 76000 Colonia Centro Histórico, QRO, Mexico
4Centro de Física Aplicada y Tecnología Avanzada, UNAM, AP 1-10101, 76000 Juriquilla, QRO, Mexico
5División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Cd. Madero, J. Rosas y J. Urueta s/n, Colonia Los Mangos, 89440 Ciudad Madero, TAMPS, Mexico

Received 1 May 2013; Revised 1 August 2013; Accepted 20 August 2013

Academic Editor: Qian Yang

Copyright © 2013 María D. Manrique-Juárez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Kozlowski, W. Walkowiak, W. Pellowski, and J. Koziol, “Competitive transport of toxic metal ions by polymer inclusion membranes,” Journal of Radioanalytical and Nuclear Chemistry, vol. 253, no. 3, pp. 389–394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Melita and M. Popescu, “Removal of Cr(VI) from industrial water effluents and surface waters using activated composite membranes,” Journal of Membrane Science, vol. 312, no. 1-2, pp. 157–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Wang and C. Chen, “Biosorbents for heavy metals removal and their future,” Biotechnology Advances, vol. 27, no. 2, pp. 195–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. G. de la Rosa, H. E. Reynel-Avila, A. Bonilla-Petriciolet, I. Cano-Rodríguez, C. Velasco-Santos, and A. L. Martínez-Hernández, “Recycling poultry feathers for Pb removal from wastewater: kinetic and equilibrium studies,” World Academy of Science, Engineering and Technology, vol. 23, pp. 394–402, 2008. View at Google Scholar
  5. C. R. Jácome-Pilco, E. Cristiani-Urbina, L. B. Flores-Cotera, R. Velasco-García, T. Ponce-Noyola, and R. O. Cañizares-Villanueva, “Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor,” Bioresource Technology, vol. 100, no. 8, pp. 2388–2391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Saucedo-Rivalcoba, A. L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, J. L. Rivera-Armenta, and V. M. Castaño, “Removal of hexavalent chromium from water by polyurethane-keratin hybrid membranes,” Water, Air, and Soil Pollution, vol. 218, no. 1–4, pp. 557–571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Saucedo-Rivalcoba, A. L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, and V. M. Castaño, “(Chicken feathers keratin)/polyurethane membranes,” Applied Physics A, vol. 104, pp. 219–228, 2011. View at Google Scholar
  8. P. Kar and M. Misra, “Use of keratin fiber for separation of heavy metals from water,” Journal of Chemical Technology and Biotechnology, vol. 79, no. 11, pp. 1313–1319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Sayed, S. M. Saleh, and E. E. Hasan, “Removal of some polluting metals from industrial water using chicken feathers,” Desalination, vol. 181, no. 1–3, pp. 243–255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Y. Arica and G. Bayramoǧlu, “Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinussajor-caju: preparation and kinetic characterization,” Colloids and Surfaces A, vol. 253, no. 1–3, pp. 203–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X. J. Hu, J. S. Wang, Y. G. Liu et al., “Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics,” Journal of Hazardous Materials, vol. 185, no. 1, pp. 306–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Vieira, M. L. M. Oliveira, E. Guibal, E. Rodríguez-Castellón, and M. M. Beppu, “Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism,” Colloids and Surfaces A, vol. 374, no. 1–3, pp. 108–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Ciobanu, G. Carja, and O. Ciobanu, “Use of SAPO-5 zeolite-filled polyurethane membranes in wastewater treatment,” Desalination, vol. 222, no. 1–3, pp. 197–201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Das, A. K. Banthia, and B. Adhikari, “Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water,” Chemical Engineering Journal, vol. 138, no. 1–3, pp. 215–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Pyrzynska, “Sorbent materials for separation and preconcentration of gold in environmental and geological samples—a review,” Analytica Chimica Acta, vol. 741, pp. 9–14, 2012. View at Google Scholar
  16. S. H. Jang, B. G. Min, Y. G. Jeong, W. S. Lyoo, and S. C. Lee, “Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1285–1292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Blázquez, F. Hernáinz, M. Calero, M. A. Martín-Lara, and G. Tenorio, “The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone,” Chemical Engineering Journal, vol. 148, pp. 473–479, 2009. View at Google Scholar
  18. Z. Aksu, F. Gönen, and Z. Demircan, “Biosorption of chromium(VI) ions by Mowital B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon,” Process Biochemistry, vol. 38, no. 2, pp. 175–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Özdemir and Ö. E. Sezgin, “Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface,” Colloids and Surfaces B, vol. 52, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. J. Alguacil, M. Alonso, F. A. Lopez, and A. Lopez-Delgado, “Pseudo-emulsion membrane strip dispersion (PEMSD) pertraction of chromium(VI) using CYPHOS IL101 ionic liquid as carrier,” Environmental Science and Technology, vol. 44, no. 19, pp. 7504–7508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Kozlowski and W. Walkowiak, “Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes,” Water Research, vol. 36, no. 19, pp. 4870–4876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Alpaydin, A. Ö. Saf, S. Bozkurt, and A. Sirit, “Kinetic study on removal of toxic metal Cr(VI) through a bulk liquid membrane containing p-tert-butylcalix[4]arene derivative,” Desalination, vol. 275, no. 1–3, pp. 166–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Albadarin, A. H. Al-Muhtaseb, N. A. Al-laqtah, G. M. Walker, S. J. Allen, and M. N. M. Ahmad, “Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts,” Chemical Engineering Journal, vol. 169, no. 1–3, pp. 20–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Gode, E. D. Atalay, and E. Pehlivan, “Removal of Cr(VI) from aqueous solutions using modified red pine sawdust,” Journal of Hazardous Materials, vol. 152, no. 3, pp. 1201–1207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Hadjmohammadi, M. Salary, and P. Biparva, “Removal of Cr(VI) from aqueous solution using pine needles powder as a biosorbent,” Journal of Applied Sciences in Environmental Sanitation, vol. 6, pp. 1–13, 2011. View at Google Scholar
  26. P. M. M. Schrooyen, P. J. Dijkstra, R. C. Oberthür, A. Bantjes, and J. Feijen, “Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films,” Journal of Agricultural and Food Chemistry, vol. 49, no. 1, pp. 221–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Aluigi, C. Tonetti, C. Vineis, C. Tonin, and G. Mazzuchetti, “Adsorption of copper(II) ions by keratin/PA6 blend nanofibres,” European Polymer Journal, vol. 47, no. 9, pp. 1756–1764, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Yang, L. Guan, Y. Zhao, and Y. Yan, “Sorption of Cu2+ and Zn2+ by natural biomaterial: duck feather,” Applied Biochemistry and Biotechnology, vol. 142, no. 2, pp. 168–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Ki, E. H. Gang, I. C. Um, and Y. H. Park, “Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption,” Journal of Membrane Science, vol. 302, no. 1-2, pp. 20–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Touaibia and B. Benayada, “Removal of mercury(II) from aqueous solution by adsorption on keratin powder prepared from Algerian sheep hooves,” Desalination, vol. 186, no. 1–3, pp. 75–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Al-Asheh, F. Banat, and D. Al-Rousan, “Beneficial reuse of chicken feathers in removal of heavy metals from wastewater,” Journal of Cleaner Production, vol. 11, no. 3, pp. 321–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Aneja and G. L. Wilkes, “Exploring macro—and microlevel connectivity of the urea phase in slabstock flexible polyurethane foam formulations using lithium chloride as a probe,” Polymer, vol. 43, no. 20, pp. 5551–5561, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Xu, Z. Petrovic, S. Das, and G. L. Wilkes, “Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments,” Polymer, vol. 49, no. 19, pp. 4248–4258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. K. P. Menard, Dynamic Mechanical Analysis, A Practical Introduction, CRC Press, Boca Raton, Fla, USA, 2008.
  35. L. Zhang, H. K. Jeon, J. Malsam, R. Herrington, and C. W. Macosko, “Substituting soybean oil-based polyol into polyurethane flexible foams,” Polymer, vol. 48, no. 22, pp. 6656–6667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. L. Rivera-Armenta, T. Heinze, and A. M. Mendoza-Martínez, “New polyurethane foams modified with cellulose derivatives,” European Polymer Journal, vol. 40, no. 12, pp. 2803–2812, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. C. Sharma, B. Singh, A. Agrawal, and C. H. Weng, “Removal of chromium by riverbed sand from water and wastewater: effect of important parameters,” Journal of Hazardous Materials, vol. 151, no. 2-3, pp. 789–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. V. K. Gupta, A. Rastogi, and A. Nayak, “Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material,” Journal of Colloid and Interface Science, vol. 342, no. 1, pp. 135–141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. C. Sharma, “Cr(VI) removal from industrial effluents by adsorption on an indigenous low-cost material,” Colloids and Surfaces A, vol. 215, no. 1–3, pp. 155–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Moritz, S. Benfer, P. Árki, and G. Tomandl, “Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes,” Separation and Purification Technology, vol. 25, no. 1–3, pp. 501–508, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Mendikute, L. Irusta, and M. J. Fernández-Berridi, “Infrared study of the photochemical behaviour of aromatic poly(ether urethanes): effect of various stabilizers,” E-Polymers, article 125, 2009. View at Google Scholar · View at Scopus
  42. L. C. Ciobanu and C. Ciobanu, “Characterization of the surface and mechanical behavior of polyurethane microporous films doped with silver nanoparticles,” E-Polymers, article 091, 2009. View at Google Scholar · View at Scopus
  43. C. Merlini, V. Soldi, and G. M. O. Barra, “Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites,” Polymer Testing, vol. 30, no. 8, pp. 833–840, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. K. B. Gireesh, K. K. Jena, S. Allauddin, K. R. Radhika, R. Narayan, and K. V. S. N. Raju, “Structure and thermo-mechanical properties study of polyurethane-urea/glycidoxypropyltrimethoxysilane hybrid coatings,” Progress in Organic Coatings, vol. 68, no. 3, pp. 165–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Zhang, Z. Ren, S. He, Y. Zhu, and C. Zhu, “FTIR spectroscopic characterization of polyurethane-urea model hard segments (PUUMHS) based on three diamine chain extenders,” Spectrochimica Acta, vol. 66, no. 1, pp. 188–193, 2007. View at Publisher · View at Google Scholar · View at Scopus