Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 905471, 10 pages
http://dx.doi.org/10.1155/2013/905471
Research Article

Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Received 9 May 2013; Revised 19 July 2013; Accepted 23 July 2013

Academic Editor: Yulin Deng

Copyright © 2013 Manisha Pandey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Abadi, M. C. I. M. Amin, N. Ahmad, H. Katas, and J. A. Jamal, “Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties,” Sains Malaysiana, vol. 41, no. 5, pp. 561–568, 2012. View at Google Scholar · View at Scopus
  2. C. L. McCormick, P. A. Callais, and B. H. Hutchinson Jr., “Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide,” Macromolecules, vol. 18, no. 12, pp. 2394–2401, 1985. View at Google Scholar · View at Scopus
  3. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte Chemie—International Edition, vol. 44, no. 22, pp. 3358–3393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Egal, T. Budtova, and P. Navard, “Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0°C and the limit of cellulose dissolution,” Biomacromolecules, vol. 8, no. 7, pp. 2282–2287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Cai and L. Zhang, “Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions,” Macromolecular Bioscience, vol. 5, no. 6, pp. 539–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Jonas and L. F. Farah, “Production and application of microbial cellulose,” Polymer Degradation and Stability, vol. 59, no. 1–3, pp. 101–106, 1998. View at Google Scholar · View at Scopus
  7. K. Watanabe, M. Tabuchi, Y. Morinaga, and F. Yoshinaga, “Structural features and properties of bacterial cellulose produced in agitated culture,” Cellulose, vol. 5, no. 3, pp. 187–200, 1998. View at Google Scholar · View at Scopus
  8. S. Zhang, F. X. Li, J. Yu, and Y. L. Hsieh, “Dissolution behaviour and solubility of cellulose in NaOH complex solution,” Carbohydrate Polymers, vol. 81, no. 3, pp. 668–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Nakayama, A. Kakugo, J. P. Gong et al., “High mechanical strength double-network hydrogel with bacterial cellulose,” Advanced Functional Materials, vol. 14, no. 11, pp. 1124–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kim, Z. Cai, H. S. Lee, G. S. Choi, D. H. Lee, and C. Jo, “Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application,” Journal of Polymer Research, vol. 18, no. 4, pp. 739–744, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Buyanov, I. V. Gofman, L. G. Revel'skaya, A. K. Khripunov, and A. A. Tkachenko, “Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, no. 1, pp. 102–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Halib, M. C. I. M. Amin, I. Ahmad, Z. M. Hashim, and N. Jamal, “Swelling of bacterial cellulose-acrylic acid hydrogels: sensitivity towards external stimuli,” Sains Malaysiana, vol. 38, no. 5, pp. 785–791, 2009. View at Google Scholar · View at Scopus
  13. M. C. I. M. Amin, N. Halib, N. Ahmad, and I. Ahmad, “Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery,” Carbohydrate Polymers, vol. 88, no. 2, pp. 465–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Halib, M. C. I. M. Amin, and I. Ahmad, “Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite,” Journal of Applied Polymer Science, vol. 116, no. 5, pp. 2920–2929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Zhang, J. Rong, W. Li, Z. Lin, and X. Zhang, “Preparation and characterization of bacterial cellulose/polyacrylamide hydrogel,” Acta Polymerica Sinica, no. 6, pp. 602–607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Zhao, Z. Li, Q. Xia, H. Xi, and Y. Lin, “Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation,” European Polymer Journal, vol. 44, no. 4, pp. 1217–1224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Jovanovic and B. Adnadjevic, “Influence of microwave heating on the kinetic of acrylic acid polymerization and crosslinking,” Journal of Applied Polymer Science, vol. 116, no. 1, pp. 55–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. X. Zhao, Z. Li, Q. B. Xia, E. Bajalis, H. X. Xi, and Y. S. Lin, “Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation,” Chemical Engineering Journal, vol. 142, no. 3, pp. 263–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Kumar, K. Singh, and M. Ahuja, “Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior,” Carbohydrate Polymers, vol. 76, no. 2, pp. 261–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. B. Marandi, K. Esfandiari, F. Biranvand, M. Babapour, S. Sadeh, and G. R. Mahdavinia, “PH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly(acrylamide) superabsorbent hydrogels,” Journal of Applied Polymer Science, vol. 109, no. 2, pp. 1083–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mohanan, B. Vishalakshi, and S. Ganesh, “Swelling and diffusion characteristics of stimuli-responsive N-isopropylacrylamide and κ-carrageenan semi-IPN hydrogels,” International Journal of Polymeric Materials, vol. 60, no. 10, pp. 787–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Peng and F. Chen, “Synthesis and properties of lignin-based polyurethane hydrogels,” International Journal of Polymeric Materials, vol. 60, no. 9, pp. 674–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. M. Mohan, P. S. K. Murthy, H. Sudhakar, B. V. K. Naidu, K. M. Raju, and M. P. Raju, “Swelling and diffusion properties of poly(acrylamide-co-maleic acid) hydrogels: a study with different crosslinking agents,” International Journal of Polymeric Materials, vol. 55, no. 11, pp. 867–892, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Chang, L. Zhang, J. Zhou, L. Zhang, and J. F. Kennedy, “Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions,” Carbohydrate Polymers, vol. 82, no. 1, pp. 122–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Pandey and M. C. I. M. Amin, “Accelerated preparation of novel bacterial cellulose/acrylamide-based hydrogel by microwave irradiation,” International Journal of Polymeric Materials, vol. 62, no. 7, pp. 402–405, 2013. View at Publisher · View at Google Scholar
  26. Y. Hagiwara, A. Putra, A. Kakugo, H. Furukawa, and J. P. Gong, “Ligament-like tough double-network hydrogel based on bacterial cellulose,” Cellulose, vol. 17, no. 1, pp. 93–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. P. L. Ritger and N. A. Peppas, “A simple equation for description of solute release II. Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol. 5, no. 1, pp. 37–42, 1987. View at Google Scholar · View at Scopus
  28. C. Özeroglu and A. Birdal, “Swelling properties of acrylamide-N,N′-methylene bis(acrylamide) hydrogels synthesized by using meso-2,3-dimercaptosuccinic acid-cerium(IV) redox couple,” Express Polymer Letters, vol. 3, no. 3, pp. 168–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Song, J. Zhou, L. Zhang, and X. Wu, “Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions,” Carbohydrate Polymers, vol. 73, no. 1, pp. 18–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Ouajai and R. A. Shanks, “Composition, structure and thermal degradation of hemp cellulose after chemical treatments,” Polymer Degradation and Stability, vol. 89, no. 2, pp. 327–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Jin, C. Zha, and L. Gu, “Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution,” Carbohydrate Research, vol. 342, no. 6, pp. 851–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Kim, G. Iyer, A. Nadarajah, J. M. Frantz, and A. L. Spongberg, “Polyacrylamide hydrogel properties for horticultural applications,” International Journal of Polymer Analysis and Characterization, vol. 15, no. 5, pp. 307–318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. R. da Silva and M. G. de Oliveira, “Effect of the cross-linking degree on the morphology of poly(NIPAAm-co-AAc) hydrogels,” Polymer, vol. 48, no. 14, pp. 4114–4122, 2007. View at Publisher · View at Google Scholar · View at Scopus