Table of Contents Author Guidelines Submit a Manuscript
International Journal of Polymer Science
Volume 2013, Article ID 925235, 9 pages
http://dx.doi.org/10.1155/2013/925235
Research Article

Biphasic Equilibrium Dialysis of Poly(N-Isopropyl Acrylamide) Nanogels Synthesized at Decreased Temperatures for Targeted Delivery of Thermosensitive Bioactives

1Department of Physical Chemistry, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
2Department of Polymer Gels, Institute of Macromolecular Chemistry of the Academy of Sciences of Czech Republic, Heyrovského Nám. 2, 162 06 Praha, Břevnov, Czech Republic
3Department of Pharmaceutical Technology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
4Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
5Department of Organic Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Received 8 July 2013; Accepted 7 September 2013

Academic Editor: Kattimuttathu I. Suresh

Copyright © 2013 Witold Musial et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. K. Oh, D. I. Lee, and J. M. Park, “Biopolymer-based microgels/nanogels for drug delivery applications,” Progress in Polymer Science, vol. 34, no. 12, pp. 1261–1282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski, “The development of microgels/nanogels for drug delivery applications,” Progress in Polymer Science, vol. 33, no. 4, pp. 448–477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. K. Oh, S. A. Bencherif, and K. Matyjaszewski, “Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications,” Polymer, vol. 50, no. 19, pp. 4407–4423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Limayem, C. Charcosset, and H. Fessi, “Purification of nanoparticle suspensions by a concentration/diafiltration process,” Separation and Purification Technology, vol. 38, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Jassby, S.-R. Chae, Z. Hendren, and M. Wiesner, “Membrane filtration of fullerene nanoparticle suspensions: effects of derivatization, pressure, electrolyte species and concentration,” Journal of Colloid and Interface Science, vol. 346, no. 2, pp. 296–302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Kim, M. Marion, B.-H. Jeong, and E. M. V. Hoek, “Crossflow membrane filtration of interacting nanoparticle suspensions,” Journal of Membrane Science, vol. 284, no. 1-2, pp. 361–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. M. Yun, C. J. Hogan Jr., Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama, “Nanoparticle filtration by electrospun polymer fibers,” Chemical Engineering Science, vol. 62, no. 17, pp. 4751–4759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Mihaila, S. Chang, A. T. Wei et al., “Lipid nanoparticle purification by Spin Centrifugation-Dialysis (SCD): a facile and high-throughput approach for small scale preparation of siRNA-lipid complexes,” International Journal of Pharmaceutics, vol. 420, no. 1, pp. 118–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Ding, G. Chen, and A. S. Hoffman, “Synthesis and purification of thermally sensitive oligomer-enzyme conjugates of poly(n-isopropylacrylamide)-trypsin,” Bioconjugate Chemistry, vol. 7, no. 1, pp. 121–126, 1996. View at Google Scholar · View at Scopus
  10. J. Gao and B. J. Frisken, “Cross-linker-free N-isopropylacrylamide gel nanospheres,” Langmuir, vol. 19, no. 13, pp. 5212–5216, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Gilányi, I. Varga, R. Mészáros, G. Filipcsei, and M. Zrínyi, “Interaction of monodisperse poly(N-isopropylacrylamide) microgel particles with sodium dodecyl sulfate in aqueous solution,” Langmuir, vol. 17, no. 16, pp. 4764–4769, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. M. M. Yallapu, J. K. Vasir, T. K. Jain, S. Vijayaraghavalu, and V. Labhasetwar, “Synthesis, characterization and antiproliferative activity of rapamycin-loaded poly(N-isopropylacrylamide)-based nanogels in vascular smooth muscle cells,” Journal of Biomedical Nanotechnology, vol. 4, no. 1, pp. 16–24, 2008. View at Google Scholar · View at Scopus
  13. N. Singh and L. A. Lyon, “Au nanoparticle templated synthesis of pNIPAm nanogels,” Chemistry of Materials, vol. 19, no. 4, pp. 719–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Ayame, N. Morimoto, and K. Akiyoshi, “Self-assembled cationic nanogels for intracellular protein delivery,” Bioconjugate Chemistry, vol. 19, no. 4, pp. 882–890, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. He, S. Yu, Y. Dong, F. Yan, and L. Chen, “Preparation and properties of a novel thermo-responsive poly(N-isopropylacrylamide) hydrogel containing glycyrrhetinic acid,” Journal of Materials Science, vol. 44, no. 15, pp. 4078–4086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Qin, M. Lu, Q. Liu, and P. Zhang, “Synthesis and characterization of thermo-sensitive poly (N-isopropylacrylamide) hydrogel with fast response rate,” Frontiers of Chemistry in China, vol. 2, no. 2, pp. 135–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Dušek, “Phase separation during the formation of three-dimensional polymers,” Journal of Polymer Science C, vol. 16, pp. 1289–1299, 1967. View at Google Scholar
  18. K. Dušek, “Quasichemical equilibrium approach to crosslinked polymer solutions,” Journal of Polymer Science C, vol. 39, no. 1, pp. 83–106, 1972. View at Google Scholar · View at Scopus
  19. K. Dušek, “Network build-up and structure in curing of epoxy resins,” Makromolekulare Chemie. Macromolecular Symposia, vol. 7, no. 1, pp. 37–53, 1987. View at Google Scholar
  20. J. I. Ngadaonye, M. O. Cloonan, L. M. Geever, and C. L. Higginbotham, “Synthesis and characterisation of thermo-sensitive terpolymer hydrogels for drug delivery applications,” Journal of Polymer Research, vol. 18, no. 6, pp. 2307–2324, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. H. Pelton and P. Chibante, “Preparation of aqueous latices with N-isopropylacrylamide,” Colloids and Surfaces, vol. 20, no. 3, pp. 247–256, 1986. View at Google Scholar · View at Scopus
  22. R. Pelton, “Temperature-sensitive aqueous microgels,” Advances in Colloid and Interface Science, vol. 85, no. 1, pp. 1–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. J. S. Lowe, B. Z. Chowdhry, J. R. Parsonage, and M. J. Snowden, “The preparation and physico-chemical properties of poly(N-ethylacrylamide) microgels,” Polymer, vol. 39, no. 5, pp. 1207–1212, 1998. View at Google Scholar · View at Scopus
  24. H. Nur, V. T. Pinkrah, J. C. Mitchell, L. S. Benée, and M. J. Snowden, “Synthesis and properties of polyelectrolyte microgel particles,” Advances in Colloid and Interface Science, vol. 158, no. 1-2, pp. 15–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Rasmusson, A. Routh, and B. Vincent, “Flocculation of microgel particles with sodium chloride and sodium polystyrene sulfonate as a function of temperature,” Langmuir, vol. 20, no. 9, pp. 3536–3542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Senff and W. Richtering, “Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions,” Colloid and Polymer Science, vol. 278, no. 9, pp. 830–840, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. B. R. Saunders, N. Laajam, E. Daly, S. Teow, X. Hu, and R. Stepto, “Microgels: from responsive polymer colloids to biomaterials,” Advances in Colloid and Interface Science, vol. 147-148, pp. 251–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Kubis, W. Musial, and M. Szczesniak, “Influence of some polysorbates on hydrocortisone release from hydrophilic gels considered as two-compartment models,” Pharmazie, vol. 57, no. 7, pp. 479–481, 2002. View at Google Scholar · View at Scopus
  29. Y. Y. Chiu and L. J. Lee, “Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA). I. Experimental,” Journal of Polymer Science A, vol. 33, no. 2, pp. 257–267, 1995. View at Google Scholar · View at Scopus
  30. Y. Y. Chiu and L. J. Lee, “Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA). II. Simulation,” Journal of Polymer Science A, vol. 33, no. 2, pp. 269–283, 1995. View at Google Scholar · View at Scopus
  31. K. Dusek, “Formation-structure relationships in polymer networks,” British Polymer Journal, vol. 17, no. 2, pp. 185–189, 1985. View at Google Scholar · View at Scopus
  32. K. Dušek, “Formation process, structure, and properties of polymer networks,” in Polymer Networks, pp. 1–6, VSP, Utrecht, The Netherlands, 1992. View at Google Scholar
  33. I. Berndt, J. S. Pedersen, and W. Richtering, “Structure of multiresponsive “intelligent” core-shell microgels,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9372–9373, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wu, R. H. Pelton, A. E. Hamielec, D. R. Woods, and W. McPhee, “The kinetics of poly(N-isopropylacrylamide) microgel latex formation,” Colloid & Polymer Science, vol. 272, no. 4, pp. 467–477, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Varga, T. Gilányi, R. Mészáros, G. Filipcsei, and M. Zrínyi, “Effect of cross-link density on the internal structure of poly(N-isopropylacrylamide) microgels,” Journal of Physical Chemistry B, vol. 105, no. 38, pp. 9071–9076, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. B. R. Saunders, “On the structure of poly(N-isopropylacrylamide) microgel particles,” Langmuir, vol. 20, no. 10, pp. 3925–3932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. G. Mason and M. Y. Lin, “Density profiles of temperature-sensitive microgel particles,” Physical Review E, vol. 71, no. 4, Article ID 040801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Stieger, J. S. Pedersen, P. Lindner, and W. Richtering, “Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study,” Langmuir, vol. 20, no. 17, pp. 7283–7292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Wu and X. Wang, “Globule-to-coil transition of a single homopolymer chain in solution,” Physical Review Letters, vol. 80, no. 18, pp. 4092–4094, 1998. View at Google Scholar · View at Scopus
  40. I. Berndt, J. S. Pedersen, and W. Richtering, “Temperature-sensitive core-shell microgel particles with dense shell,” Angewandte Chemie—International Edition, vol. 45, no. 11, pp. 1737–1741, 2006. View at Publisher · View at Google Scholar · View at Scopus