Table of Contents Author Guidelines Submit a Manuscript
International Journal of Reconfigurable Computing
Volume 2012, Article ID 135926, 15 pages
http://dx.doi.org/10.1155/2012/135926
Research Article

Novel Dynamic Partial Reconfiguration Implementation of K-Means Clustering on FPGAs: Comparative Results with GPPs and GPUs

1School of Engineering, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
2Bio-Health Informatics Research Group, Centre for Computational Intelligence, De Montfort University, Leicester LE1 9BH, UK

Received 3 May 2012; Revised 17 September 2012; Accepted 3 October 2012

Academic Editor: René Cumplido

Copyright © 2012 Hanaa M. Hussain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Kumar, B. Ozisikyilmaz, W.-K. Liao, G. Memik, and A. Choudhary, “High performance data mining using R on heterogeneous platforms,” in Proceedings of the 25th IEEE International Parallel and Distributed Processing Symposium, Workshops and Phd Forum (IPDPSW '11), pp. 1720–1729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “FPGA implementation of K-means algorithm for bioinformatics application: an accelerated approach to clustering Microarray data,” in Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems (AHS '11), pp. 248–255, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, “Algorithmic transformations in the implementation of K-means clustering on reconfigurable hardware,” in Proceedings of the ACM/SIGDA 9th International Sysmposium on Field Programmable Gate Arrays (FPGA '01), pp. 103–110, February 2001. View at Scopus
  4. M. Leeser, P. Belanovic, M. Estlick, M. Gokhale, J. J. Szymanski, and J. Theiler, “Applying reconfigurable hardware to the analysis of multispectral and hyperspectral imagery,” in Imaging Spectrometry VII, vol. 4480 of Proceedings of SPIE, pp. 100–107, August 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Estlick, An FPGA implementation of the K-means algorithm for image processing [M.S. thesis], Department of Electrical and Computer Engineering, Northeastern University, Boston, Mass, USA, 2002.
  6. D. Lavenier, FPGA Implementation of the K-Means Clustering Algorithm For Hyperspectral Images, Los Alamos National Laboratory, LAUR, Los Alamos, Ill, USA, 2000.
  7. M. Gokhale, J. Frigo, K. Mccabe, J. Theiler, C. Wolinski, and D. Lavenier, “Experience with a hybrid processor: K-means clustering,” Journal of Supercomputing, vol. 26, no. 2, pp. 131–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Theiler, M. Leeser, M. Estlick, and J. J. Szymanski, “Design issues for hardware implementation of an algorithm for segmenting hyperspectral imagery,” in Imaging Spectrometry VI, vol. 4132 of Proceedings of SPIE, pp. 99–106, August 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Bhaskaran, Parametrized implementation of K-means clustering on reconfigurable systems [M.S. thesis], Department of Electrical Engineering, University of Tennessee, Knoxville, Ten, USA, 2003.
  10. R. Farivar, D. Rebolledo, E. Chan, and R. Campbell, “A parallel implementation of K-means clustering on GPUs,” in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA '08), pp. 340–345, Las Vegas, Nev, USA, July 2008. View at Scopus
  11. S. A. A. Shalom, M. Dash, and M. Tue, “Efficient K-means clustering using accelerated graphics processors,” in Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery (DaWaK '08), vol. 5182 of Lecture Notes in Computer Science, pp. 166–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Karch, GPU based acceleration of selected clustering techniques [M.S. thesis], Department of Electrical and Computer Engineering and Computer Sciences, Silesian University of Technology in Gliwice, Silesia, Poland, 2010.
  13. A. Choudhary, D. Honbo, P. Kumar, B. Ozisikyilmaz, S. Misra, and G. Memik, “Accelerating Data Mining Workloads: current approaches and future challenges in system architecture design,” Wiley Interdisciplinary Reviews, vol. 1, pp. 41–54, 2011. View at Google Scholar
  14. M. C. P. De Souto, S. C. M. Silva, V. G. Bittencourt, and D. S. A. De Araujo, “Cluster ensemble for gene expression microarray data,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '05), vol. 1, pp. 487–492, August 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Shalom, M. Dash, and M. Tue, “GPU-based fast k-means clustering of gene expression profiles,” in Proceedings of the 12th Annual International Conference on Research in Computational Molecular Biology (RECOMB '08), Singaphore, 2008.
  16. H. Hussain, K. Benkrid, H. Seker, and A. Erdogan, “Highly parametrized K-means clustering on FPGAs: comparative results with GPPs and GPUs,” in Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig '11), pp. 475–480, 2011.
  17. Nvidia Corp., GEForce 9600 GT datasheet, 2012, http://www.nvidia.com/object/product_geforce_9600gt_us.html.
  18. K. Benkrid, A. Akoglu, C. Ling, Y. Song, X. Tian, and Y. Lue, “High perfomance biological pairwise sequence alignment: FPGA vs. GPU vs. CellBE vs. GPP,” International Journal of Reconfigurable Computing, vol. 2012, Article ID 752910, 15 pages, 2012. View at Publisher · View at Google Scholar
  19. Xilinx Corp., Hierarchical Design Methodology guide, ug748, v13.3, 2011, http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/Hierarchical_Design_Methodology_Guide.pdf.
  20. Xilinx Corp., Partial Reconfiguration guide, ug702, v12.3, p. 103, 2010, http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_3/ug702.pdf.
  21. X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Martinez, “Empty resource compaction algorithms for real-time hardware tasks placement on partially reconfigurable FPGAs subject to fault ocurrence,” in Proceedings of the International Conference on ReConFigurable Computing and FPGAs (ReConFig '11), pp. 475–480, November 2011.