Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2011, Article ID 537824, 16 pages
http://dx.doi.org/10.1155/2011/537824
Research Article

Impeller Design of a Centrifugal Fan with Blade Optimization

1Carderock Division, Naval Surface Warfare Center, Code 5700, West Bethesda, MD 20817, USA
2Combustion Research and Flow Technology, Inc. (CRAFT Tech), Pipersville, PA 18947, USA
3Ships Systems Engineering Station, Carderock Division, Naval Surface Warfare Center, Code 9860, Philadelphia, PA 19112, USA

Received 1 December 2010; Revised 12 May 2011; Accepted 14 June 2011

Academic Editor: Meinhard Taher Schobeiri

Copyright © 2011 Yu-Tai Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Yun and A. Bliault, Theory and Design of Air Cushion Craft, Elsevier Butterworth-Heinemann 30 Corporate Drive, Burlington, Mass, USA, 2005.
  2. K. A. Kaupert and T. Staubli, “The unsteady pressure field in a high specific speed centrifugal pump impeller—part I: influence of the volute,” Journal of Fluids Engineering, Transactions of the ASME, vol. 121, no. 3, pp. 621–626, 1999. View at Google Scholar · View at Scopus
  3. K. Hillewaert and R. A. Van Den Braembussche, “Numerical simulation of impeller-volute interaction in centrifugal compressors,” Journal of Turbomachinery, vol. 121, no. 3, pp. 603–608, 1999. View at Google Scholar · View at Scopus
  4. Y. T. Lee and T. W. Bein, “Performance evaluation of an air-conditioning compressor—part II: volute flow predictions,” International Journal of Rotating Machinery, vol. 5, no. 4, pp. 241–250, 1999. View at Google Scholar · View at Scopus
  5. T. Meakhail and S. O. Park, “A study of impeller-diffuser-volute interaction in centrifugal fan,” Journal of Turbomachinery, vol. 127, no. 1, pp. 84–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Atif, S. Benmansour, and G. Bois, “Numerical investigation of velocity flow field inside an impeller air model of a centrifugal pump with vaned diffuser interactions and comparison with PIV measurements,” International Journal of Rotating Machinery, vol. 2010, Article ID 706043, 12 pages, 2010. View at Publisher · View at Google Scholar
  7. K. V. Karanth and N. Y. Sharma, “CFD analysis on the effect of radial gap on impeller-diffuser flow interaction as well as on the flow characteristics of a centrifugal fan,” International Journal of Rotating Machinery, vol. 2009, Article ID 293508, 8 pages, 2009. View at Publisher · View at Google Scholar
  8. M. E. Slipper, P. J. McGinnis, G. Choi et al., “Design and evaluation of high performance lift fan models for the landing craft, air cushion (LCAC),” Naval Surface Warfare Center Report NSWCCD-98-TR-2008, 2008. View at Google Scholar
  9. A. Hosangadi, R. A. Lee, B. J. York, N. Sinha, and S. M. Dash, “Upwind unstructured scheme for three-dimensiona combusting flows,” Journal of Propulsion and Power, vol. 12, no. 3, pp. 494–502, 1996. View at Google Scholar · View at Scopus
  10. A. Hosangadi, R. A. Lee, P. A. Cavallo, N. Sinha, and B. J. York, “Hybrid, viscous, unstructured mesh solver for propulsive applications,” in Proceedings of the 34th Joint Propulsion Conference, AIAA-98-3153, Cleveland, Ohio, USA, 1998.
  11. T. J. Barth, “A 3D upwind euler solver for unstructured meshes,” Paper No. AIAA-91-1548, 1991.
  12. T. J. Barth and S. W. Linton, “An unstructured mesh newton solution for compressible fluid flow and its parallel implementation,” Paper No. AIAA-95-0221, 1995.
  13. Y. T. Lee, L. Mulvihill, R. Coleman et al., “LCAC lift fan redesign and CFD evaluation,” Naval Surface Warfare Center Report NSWCCD-50-TR-2007/031, 2007. View at Google Scholar
  14. Y. T. Lee, V. Ahuja, A. Hosangadi, and M. Ebert, “Shape optimization of a multi-element foil using an evolutionary algorithm,” Transactions of the ASME Journal of Fluids Engineering, vol. 132, no. 5, pp. 051401-1–051401-11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kim, J. Park, K. Ahn, and J. Baek, “Improvement of the performance of a centrifugal compressor by modifying the volute inlet,” ASME Journal of Fluids Engineering, vol. 132, pp. 091101-1–091101-7, 2010. View at Google Scholar
  16. Y. T. Lee, “Impact of fan gap flow on the centrifugal impeller aerodynamics,” Transaction of ASME Journal of Fluids Engineering, vol. 132, pp. 091103-1–091103-9, 2010. View at Google Scholar
  17. A. Hildebrandt and M. Genrup, “Numerical investigation of the effect of different back sweep angle and exducer width on the impeller outlet flow pattern of a centrifugal compressor with vaneless diffuser,” Journal of Turbomachinery, vol. 129, no. 2, pp. 421–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Phelan, S. H. Russel, and W. C. Zeluff, “A study of the influence of reynolds number on the performance of centrifugal fans,” ASME Paper No. 78-WA/PTC-1, 1978.