Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2011, Article ID 908469, 23 pages
Review Article

A Review of Tilting Pad Bearing Theory

Rotating Machinery and Controls Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22911, USA

Received 24 January 2011; Accepted 5 May 2011

Academic Editor: R. Kirk

Copyright © 2011 Timothy Dimond et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A theoretical basis for static and dynamic operation of tilting pad journal bearings (TPJBs) has evolved over the last 50 years. Originally demonstrated by Lund using the pad assembly method and a classic Reynolds equation solution, the current state of the art includes full thermoelastohydrodynamic solutions of the generalized Reynolds equation that include fluid convective inertia effects, pad motions; and thermal and mechanical deformations of the pads and shaft. The development of TPJB theory is reviewed, emphasizing dynamic modeling. The paper begins with the early analyses of fixed geometry bearings and continues to modern analyses that include pad motion and stiffness and damping effects. The development of thermohydrodynamic, thermoelastohydrodynamic, and bulk-flow analyses is reviewed. The theories of TPJB dynamics, including synchronous and nonsynchronous models, are reviewed. A discussion of temporal inertia effects in tilting pad bearing is considered. Future trends are discussed, and a path for experimental verification is proposed.