Table of Contents Author Guidelines Submit a Manuscript
International Journal of Rotating Machinery
Volume 2011 (2011), Article ID 908469, 23 pages
http://dx.doi.org/10.1155/2011/908469
Review Article

A Review of Tilting Pad Bearing Theory

Rotating Machinery and Controls Laboratory, Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22911, USA

Received 24 January 2011; Accepted 5 May 2011

Academic Editor: R. Kirk

Copyright © 2011 Timothy Dimond et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Suganami and A. Z. Szeri, “A thermohydrodynamic analysis of journal bearings,” Journal of Lubrication Technology, vol. 101, no. 1, pp. 21–27, 1979. View at Google Scholar · View at Scopus
  2. C. H. Li, “The effect of thermal diffusion on flow stability between two rotating cylinders,” Journal of Lubrication Technology, vol. 99, no. 3, pp. 318–322, 1977. View at Google Scholar · View at Scopus
  3. T. S. Brockett, Thermoelastohydrodynamic lubrication in thrust bearings, Ph.D. thesis, University of Virginia, Charlottesville, Va, USA, 1994.
  4. S. Taniguchi, T. Makino, K. Takeshita, and T. Ichimura, “Thermohydrodynamic analysis of large tilting-pad journal bearing in laminar and turbulent flow regimes with mixing,” Journal of Tribology, vol. 122, no. 3, pp. 542–550, 1990. View at Google Scholar
  5. H. Xu and J. Zhu, “Research of fluid flow and flow transition criteria from laminar to turbulent in a journal bearing,” Journal of Xi'an Jiaotong University, vol. 27, no. 3, pp. 7–14, 1993. View at Google Scholar · View at Scopus
  6. E. J. Gunter, “Dynamic stability of rotor-bearing systems,” Tech. Rep. NASA SP-113, National Aeronautics and Space Administration, 1966. View at Google Scholar
  7. O. Reynolds, “On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil,” Philosophical Transactions of the Royal Society, vol. 177, pp. 157–234, 1886. View at Google Scholar
  8. A. Sommerfeld, “Zur Hydrodynamische Theorie der Schmiermittelreibung,” Zeitschrift für Mathematik und Physik, vol. 50, pp. 97–155, 1904. View at Google Scholar
  9. A. Stodola, “Kritische Wellenstörung infolge der Nachgiebigkeit des Oelpolsters im Lager,” Schweizerische Bauzeitung, vol. 85/86, pp. 265–266, 1925. View at Google Scholar
  10. C. Hummel, Kritische drehzahlen als folge der nachgiebigkeit des schmiermittels im lager, Ph.D. thesis, Eidgenössischen Technischen Hochschule in Zürich, 1926.
  11. F. C. Linn and M. A. Prohl, “The effect of flexibility of support upon the critical speeds of high speed rotors,” Journals & Transactions—Society of Naval Architects & Marine Engineers, vol. 59, pp. 536–553, 1951. View at Google Scholar
  12. J. E. L. Simmons and S. D. Advani, “Michell and the development of tilting pad bearing,” in Fluid Film Lubrication—Osborne Reynolds Centenary: Proceedings of the 13th Leeds-Lyon Symposium on Tribology, D. Dowson, C. M. Taylor, M. Godet, and D. Berthe, Eds., pp. 49–56, Elsevier Science, 1987. View at Google Scholar
  13. C. M. M. Ettles, “The analysis and performance of pivoted pad journal bearings considering thermal and elastic effects,” Journal of Lubrication Technology, vol. 102, no. 2, pp. 182–192, 1980. View at Google Scholar · View at Scopus
  14. J. Boyd and A. A. Raimondi, “An analysis of the pivoted-pad journal bearing,” Mechanical Engineering, vol. 75, no. 5, pp. 380–386, 1953. View at Google Scholar
  15. A. C. Hagg, “The influence of oil film journal bearings on the stability of rotating machines,” Journal of Applied Mechanics, vol. 13, pp. A–211–A–220, 1946. View at Google Scholar
  16. B. Sternlicht, “Elastic and damping properties of partial porous journal bearings,” Journal of Basic Engineering, vol. 81, pp. 101–108, 1959. View at Google Scholar
  17. D. M. Smith, Journal Bearings in Turbomachinery, Chapman and Hall, London, UK, 1969.
  18. O. Pinkus and B. Sternlicht, Theory of Hydrodynamic Lubrication, McGraw-Hill, New York, NY, USA, 1961.
  19. A. Tondl, Some Problems of Rotor Dynamics, Chapman and Hall, London, UK, 1965.
  20. J. W. Lund, “Spring and damping coefficients for the tilting-pad journal bearing,” ASLE Transactions, vol. 42, no. 4, pp. 342–352, 1964. View at Google Scholar
  21. F. K. Orcutt, “The steady state and dynamic characteristics of the tilting pad journal bearing in laminar and turbulent flow regimes,” ASME, Journal of Lubrication Technology, vol. 89, no. 3, pp. 392–404, 1967. View at Google Scholar
  22. C. W. Ng and C. H. T. Pan, “A linearized turbulent ubrication theory,” Journal of Basic Engineering, vol. 87, pp. 675–682, 1965. View at Google Scholar
  23. J. C. Nicholas, E. J. Gunter, and L. E. Barrett, “The influence of tilting pad bearing characteristics on the stability of high speed rotor-bearing systems,” in Proceedings of the Design Engineering Conference, Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, pp. 55–78, April 1978.
  24. J. C. Nicholas, “Lund's tilting pad journal bearing pad assembly method,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 125, no. 4, pp. 448–454, 2003. View at Google Scholar · View at Scopus
  25. J. C. Nicholas, E. J. Gunter, and P. E. Allaire, “Stiffness and damping coefficients for the five-pad tilting-pad bearing,” ASLE Trans, vol. 22, no. 2, pp. 113–124, 1979. View at Google Scholar · View at Scopus
  26. J. C. Nicholas and R. G. Kirk, “Selection and design of tilting pad and fixed lobe journal bearings for optimum turborotor dynamics,” in Proceedings of the 8th Turbomachinery Symposium, P. E. Jenkins, Ed., vol. 1, pp. 43–57, Texas A&M University Press, College Station, Tex, USA, 1979.
  27. J. C. Nicholas and R. G. Kirk, “Four pad tilting pad bearing design and application for multistage axial compressors,” ASME, Journal of Lubrication Technology, vol. 104, no. 4, pp. 523–532, 1982. View at Google Scholar · View at Scopus
  28. G. J. Jones and F. A. Martin, “Geometry effects in tilting-pad journal bearings,” ASLE Trans, vol. 22, no. 3, pp. 227–244, 1979. View at Google Scholar · View at Scopus
  29. V. N. Constantinescu, “On the pressure equation for turbulent lubrication,” in Proceedings of the Conference on Lubrication and Wear, vol. 182–183, pp. 132–134, IMechE, London, UK, 1967.
  30. L. Malcher, Die Federungs und Dämpfungseigenschaften von Gleitlagern für Turbomaschinen, Ph.D. thesis, Karlsruhe Technische Hochschüle, 1975.
  31. H. Hashimoto, S. Wada, and T. Marukawa, “Performance characteritics of large scale tilting-pad journal bearings,” Bulletin of the JSME, vol. 28, no. 242, pp. 1761–1767, 1985. View at Google Scholar · View at Scopus
  32. J. D. Knight and L. E. Barrett, “Analysis of tilting pad journal bearings with heat transfer effects,” Journal of Tribology, vol. 110, no. 1, pp. 128–133, 1988. View at Google Scholar · View at Scopus
  33. D. Brugier and M. T. Pascal, “Influence of elastic deformations of turbo-generator tilting pad bearings on the static behavior and on the dynamic coefficients in different designs,” Journal of Tribology, vol. 111, no. 2, pp. 364–371, 1989. View at Google Scholar · View at Scopus
  34. C. M. Ettles, “Analysis of pivoted pad journal bearing assemblies considering thermoelastic deformation and heat transfer effects,” Tribology Transactions, vol. 35, no. 1, pp. 156–162, 1992. View at Google Scholar · View at Scopus
  35. K. Brockwell and W. Dmochowski, “Experimental determination of the journal bearingoil film coefficients by the method of selective vibration orbits,” in Proceedings of the 12th Biennial Conference on Mechanical Vibration and Noise, T. S. Sankar, V. Kamala, and P. Kim, Eds., pp. 251–259, ASME, New York, NY, USA, 1989.
  36. M. Fillon, D. Souchet, and J. Frêne, “Influence of bearing element displacements onthermohydrodynamic characteristics of tilting-pad journal bearings,” in Proceedings of the Japan International Tribology Conference, pp. 635–640, Nagoya, Japan, 1990.
  37. K. Brockwell, D. Kelinbub, and W. Dmochowski, “Measurement and calculation of the dynamic operating characteristics of the five shoe, tilting pad journal bearing,” Tribology Transactions, vol. 33, no. 4, pp. 481–492, 1990. View at Google Scholar · View at Scopus
  38. G. Hopf and D. Schüeler, “Investigations on large turbine bearings working under transitional conditions between laminar and turbulent flow,” Journal of Tribology, vol. 111, no. 4, pp. 628–634, 1989. View at Google Scholar · View at Scopus
  39. C. H. Hyun, J. K. Ho, and W. K. Kyung, “Inlet pressure effects on the thermohydrodynamic performance of a large tilting pad journal bearing,” Journal of Tribology, vol. 117, no. 1, pp. 160–165, 1995. View at Google Scholar · View at Scopus
  40. J. C. Nicholas and K. D. Wygant, “Tilting pad journal bearing pivot design for high load applications,” in Proceedings of the 24th Turbomachinery Symposium, J. C. Bailey, Ed., vol. 1, pp. 179–193, Turbomachinery Laboratory, Texas A&M University Press, College Station, Tex, USA, 1995.
  41. J. M. Conway-Jones, “Plain bearing damage,” in Proceedings of the 4th Turbomachinery Symposium, W. Tabakoff, Ed., vol. 1, pp. 55–63, Texas A&M University Press, College Station, Tex, USA, 1975.
  42. P. Monmousseau and M. Fillon, “Transient thermoelastohydrodynamic analysis for safe operating conditions of a tilting-pad journal bearing during start-up,” Tribology International, vol. 33, no. 3-4, pp. 225–231, 2000. View at Google Scholar · View at Scopus
  43. R. G. Kirk and S. W. Reedy, “Evaluation of pivot stiffness for typical tilting-pad journal bearing designs,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, vol. 110, no. 2, pp. 165–171, 1988. View at Google Scholar · View at Scopus
  44. P. Monmousseau, M. Fillon, and J. Frêne, “Transient thermoelastohydrodynamic study of tilting-pad journal bearings—comparison between experimental data and theoretical results,” Journal of Tribology, vol. 119, no. 3, pp. 401–407, 1997. View at Google Scholar · View at Scopus
  45. W. Shapiro and R. Colsher, “Dynamic characteristics of fluid-film bearings,” in Proceedings of the 6th Turbomachinery Symposium, M. P. Boyce, Ed., vol. 1, pp. 39–53, Turbomachinery Laboratory, Texas A&M University Press, College Station, Tex, USA, 1977.
  46. P. E. Allaire, J. K. Parsell, and L. E. Barrett, “A pad perturbation method for the dynamic coefficients of tilting-pad journal bearings,” Wear, vol. 72, no. 1, pp. 29–44, 1981. View at Google Scholar · View at Scopus
  47. J. K. Parsell, P. E. Allaire, and L. E. Barrett, “Frequency effects in tilting-pad journal bearing dynamic coefficients,” ASLE Transactions, vol. 26, no. 2, pp. 222–227, 1983. View at Google Scholar · View at Scopus
  48. American Petroleum Institute, API 684: API Standard Paragraphs Rotordynamic Tutorial: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing, American Petroleum Institute, Washington, DC, USA, 2nd edition, 2005.
  49. J. C. Nicholas, “Tilting pad bearing design,” in Proceedings of the 23rd Turbomachinery Symposium, J. C. Bailey, Ed., vol. 1, pp. 179–193, Turbomachinery Laboratory, Texas A&M University Press, College Station, Tex, USA, 1994.
  50. K. E. Rouch, “Dynamics of pivoted-pad journal bearings, including pad translation and rotation effects,” ASLE Transactions, vol. 26, no. 1, pp. 102–109, 1983. View at Google Scholar · View at Scopus
  51. J. W. Lund and L. B. Pedersen, “The influence of pad flexibility on the dynamic coefficients of a tilting pad journal bearing,” Journal of Tribology, vol. 109, no. 1, pp. 65–70, 1987. View at Google Scholar · View at Scopus
  52. L. A. Branagan, Thermal analysis of fixed and tilting pad journal bearings including cross-film viscosity variations and deformations, Ph.D. thesis, University of Virginia, Charlottesville, Va, USA, 1988.
  53. J. A. Chaudhry, Rotor dynamics analysis in MatLab framework, M.S. thesis, Universityof Virginia, Charlottesville, Va, USA, 2008.
  54. L. E. Barrett, P. E. Allaire, and B. W. Wilson, “The eigenvalue dependence of reduced tilting pad bearing stiffness and damping coefficients,” Tribology Transactions, vol. 31, no. 4, pp. 411–419, 1966. View at Google Scholar · View at Scopus
  55. L. L. Earles, A. B. Palazzolo, and R. W. Armentrout, “Finite element approach to pad flexibility effects in tilt pad journal bearings. Part I. Single pad analysis,” Journal of Tribology, vol. 112, no. 2, pp. 169–177, 1990. View at Google Scholar · View at Scopus
  56. L. L. Earles, A. B. Palazzolo, and R. W. Armentrout, “A finite element approach to pad flexibility effects in tilt pad journal bearings: part II—assembled bearing and system,” Journal of Tribology, vol. 112, no. 2, pp. 178–182, 1990. View at Google Scholar
  57. M. F. White and S. H. Chan, “Subsynchronous dynamic behavior of tilting-pad journal bearings,” Journal of Tribology, vol. 114, no. 1, pp. 167–173, 1992. View at Google Scholar · View at Scopus
  58. G. G. Hirs, “A bulk-flow theory for turbulence in lubricant films,” Journal of Lubrication Technology, vol. 95, no. 2, pp. 137–146, 1973. View at Google Scholar
  59. T. S. Brockett and L. E. Barrett, “Exact dynamic reduction of tilting-pad bearing models for stability analyses,” Tribology Transactions, vol. 36, no. 4, pp. 581–588, 1993. View at Google Scholar · View at Scopus
  60. J. Kim, A. Palazzolo, and R. Gadangi, “Dynamic characteristics of TEHD tilt pad journal bearing simulation including multiple mode pad flexibility model,” Journal of Vibration and Acoustics, vol. 117, no. 1, pp. 123–135, 1995. View at Google Scholar · View at Scopus
  61. M. Fillon, J. C. Bligoud, and J. Frene, “Experimental study of tilting-pad journal bearings—comparison with theoretical thermoelastohydrodynamic results,” Journal of Tribology, vol. 114, no. 3, pp. 579–588, 1992. View at Google Scholar · View at Scopus
  62. B. W. Wilson and L. E. Barrett, The effect of eigenvalue-dependent tilt pad bearing characteristics on the stability of rotor-bearing systems, M.S. thesis, University of Virginia, Charlottesville, Va, USA, 1985.
  63. M. He, Thermoelastohydrodynamic analysis of fluid film journal bearings, Ph.D. thesis, University of Virginia, Charlottesville, Va, USA, 2003.
  64. M. He and P. E. Allaire, “Thermoelastohydrodynamic analysis of journal bearingswith 2D generalized energy equation,” in Proceedings of the 6th International Conference on Rotor Dynamics, E. J. Hahn and R. B. Randall, Eds., vol. 1, IFToMM, 2002.
  65. M. He, P. E. Allaire, and L. E. Barrett, “TEHD modeling of leading edge groove tilting pad bearings,” in Proceedings of the 6th InternationalConference on Rotor Dynamics, E. J. Hahn and R. B. Randall, Eds., vol. 1, IFToMM, Sydney, Australia, 2002.
  66. M. He, P. Allaire, L. Barrett, and J. Nicholas, “Thermohydrodynamic modeling of leading-edge groove bearings under starvation condition,” Tribology Transactions, vol. 48, no. 3, pp. 362–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. P. Michaud, D. Souchet, and D. Bonneau, “Thermohydrodynamic lubrication analysis for a dynamically loaded journal bearing,” Proceedings of the Institution of Mechanical Engineers, Part J, vol. 221, no. 1, pp. 49–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. B. R. Munson, D. R. Young, and T. H. Okiishi, Fundamentals of Fluid Mechanics, John Wiley & Sons, New York, NY, USA, 5th edition, 2006.
  69. H. G. Elrod and C. W. Ng, “A theory for turbulent fluid films and its applicationto bearings,” Journal of Lubrication Technology, vol. 89, no. 3, pp. 346–362, 1967. View at Google Scholar
  70. V. N. Constantinescu, “On turbulent lubrication,” Proceedings of the IMechE, vol. 173, no. 38, pp. 881–900, 1959. View at Google Scholar
  71. V. N. Constantinescu, “On the influence of inertia forces in turbulent and laminar self-acting films,” Journal of Lubrication Technology, vol. 92, no. 3, pp. 473–481, 1970. View at Google Scholar · View at Scopus
  72. V. N. Constantinescu and S. Galetuse, “On the possibilities of improving the accuracy of the evaluation of inertia forces in laminar and turbulent films,” Journal of Lubrication Technology, vol. 96, no. 1, pp. 69–79, 1974. View at Google Scholar · View at Scopus
  73. V. N. Constantinescu and S. Galetuse, “Operating characteristics of journal bearings in turbulent inertial flow,” Journal of Lubrication Technology, vol. 104, pp. 173–179, 1982. View at Google Scholar
  74. Z. L. Yang, L. San Andrés, and D. Childs, “Thermohydrodynamic analysis of process liquid hydrostatic bearings in turbulent regime part I: the model and perturbation analysis,” Journal of Applied Mechanics, vol. 62, no. 3, pp. 674–679, 1995. View at Google Scholar
  75. Z. L. Yang, L. San Andrés, and D. Childs, “Thermohydrodynamic analysis of process liquid hydrostatic bearings in turbulent regime part II: numerical solution and results,” Journal of Applied Mechanics, vol. 62, no. 2, pp. 680–684, 1995. View at Google Scholar
  76. L. San Andrés, “Thermohydrodynamic analysis of fluid film bearings for cryogenic applications,” Journal of Propulsion and Power, vol. 11, no. 5, pp. 964–972, 1995. View at Google Scholar · View at Scopus
  77. A. Z. Szeri, Fluid Film Lubrication Theory & Design, Cambridge University Press, Cambridge, UK, 1998.
  78. G. G. Hirs, “A systematic study of turbulent film flow,” Journal of Lubrication Technology, vol. 96, no. 1, pp. 118–126, 1974. View at Google Scholar · View at Scopus
  79. C. M. Taylor and D. Dowson, “Turbulent lubrication theory—application to design,” Journal of Lubrication Technology, vol. 96, no. 1, pp. 36–47, 1974. View at Google Scholar · View at Scopus
  80. L. Bouard, M. Fillon, and J. Frêne, “Comparison between three turbulent models—application to thermohydrodynamic performances of tilting-pad journal bearings,” Tribology International, vol. 29, no. 1, pp. 11–18, 1996. View at Google Scholar
  81. T. W. Dimond, A. A. Younan, P. E. Allaire, and J. C. Nicholas, “Modal frequency response of a four-pad tilting pad bearing with spherical pivots, finite pivots, finite pivot stiffness and different pad preloads,” in Proceedings of the ASME Turbo Expo, vol. 1, ASME, 2010.
  82. T. W. Dimond, P. N. Sheth, P. E. Allaire, and M. He, “Identification methods and test results for tilting pad and fixed geometry journal bearing dynamic coefficients—a review,” Shock and Vibration, vol. 16, no. 1, pp. 13–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. T. W. Dimond, A. A. Younan, and P. E. Allaire, “Comparison of tilting-pad journal bearing dynamic full coefficient and reduced order models using modal analysis,” in Proceedings of the ASME Turbo Expo, pp. 1043–1053, ASME, June 2009.
  84. N. O. Myklestad, “A new method of calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams,” Journal of the Aeronautical Sciences, vol. 11, pp. 153–162, 1944. View at Google Scholar
  85. M. A. Prohl, “A general method for calculating critical speeds of flexible rotors,” Journal of Applied Mechanics, vol. 12, pp. 142–148, 1945. View at Google Scholar
  86. American Petroleum Institute, API 617: Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services, American Petroleum Institute, Washington, DC, USA, 2002.
  87. J. A Kocur, “The state of rotordynamics—today and the future,” in Proceedings of the Rotating Machinery and Controls Laboratory (ROMAC '09), June 2009.
  88. C. Rouvas and D. W. Childs, “A parameter identification method for the rotordynamic coefficients of a high reynolds number hydrostatic bearing,” Journal of Vibration and Acoustics, vol. 115, no. 3, pp. 264–270, 1993. View at Google Scholar
  89. D. Childs and K. Hale, “Test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings,” Journal of Tribology, vol. 116, no. 2, pp. 337–344, 1994. View at Google Scholar · View at Scopus
  90. A. M. Al-Ghasem and D. W. Childs, “Rotordynamic coefficients measurements versus predictions for a high-speed flexure-pivot tilting-pad bearing (load-between-pad configuration),” Journal of Engineering for Gas Turbines and Power, vol. 128, no. 4, pp. 896–906, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. L. E. Rodriguez and D. W. Childs, “Frequency dependency of measured and predicted rotordynamic coefficients for a load-on-pad flexible-pivot tilting-pad bearing,” Journal of Tribology, vol. 128, no. 2, pp. 388–395, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. C. R. Carter and D. Childs, “Measurements versus predictions for the rotordynamic characteristics of a 5-pad, rocker-pivot, tilting-pad bearing in load between pad configuration,” in Proceedings of the ASME Turbo Expo, vol. 1, ASME, Berlin, Germany, June 2008.
  93. C. R. Carter and D. W. Childs, “Measurements versus predictions for the rotordynamic characteristics of a five-pad rocker-pivot tilting-pad bearing in load-between-pad configuration,” Journal of Engineering for Gas Turbines and Power, vol. 131, no. 1, Article ID 012507, 2009. View at Publisher · View at Google Scholar
  94. D. Childs and J. Harris, “Static Performance characteristics and rotordynamic coefficients for a four-pad ball-in-socket tilting pad journal bearing,” Journal of Engineering for Gas Turbines and Power, vol. 131, no. 6, Article ID 062502, 2009. View at Publisher · View at Google Scholar
  95. A. Delgado, G. Vannini, B. Ertas, M. Drexel, and L. Naldi, “Identification and predictionof force coefficients in a five-pad and four-pad tilting pad bearing for loadon-pad and load-between-pad configurations,” in Proceedings of the ASME Turbo Expo 2010, vol. 1, ASME, 2010.
  96. D. W. Childs, “Tilting-pad bearings: measured frequency characteristics of their rotordynamic coefficients,” in Proceedings of the 8th IFToMM International Conference on Rotor Dynamics, vol. 1, pp. 1–8, IFToMM, Seoul, Korea, 2010.
  97. E. Reinhardt and J. W. Lund, “The influence of fluid inertia on the dynamic properties of journal bearings,” Journal of Lubrication Technology, vol. 97, no. 2, pp. 33–40, 1975. View at Google Scholar · View at Scopus
  98. A. Z. Szeri, A. A. Raimondi, and A. Giron-Duarte, “Linear force coefficients for squeeze-film dampers,” Journal of Lubrication Technology, vol. 105, no. 3, pp. 326–334, 1983. View at Google Scholar · View at Scopus
  99. T. W. Dimond, A. A. Younan, and P. Allaire, “The effect of tilting pad journal bearing dynamic models on the linear stability analysis of an 8-stage compressor,” Journal of Engineering for Gas Turbines and Power. In press.
  100. T. W. Dimond, A. A. Younan, and P. Allaire, “Comparison of tilting-pad journal bearing dynamic full coefficient and reduced order models using modal analysis (GT2009-60269),” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 132, no. 5, pp. 0510091–05100910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. J. C. Wilkes and D. W. Childs, “Measured and predicted transfer functions between rotor motion and pad motion for a rocker-back tilting-pad bearing in LOP configuration,” in Proceedings of the ASME Turbo Expo, ASME, Vancouver, Canada, 2011.