Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 508416, 9 pages
http://dx.doi.org/10.1155/2012/508416
Review Article

Role of Peroxisome Proliferator-Activated Receptor-γ in Vascular Inflammation

Department of Molecular Cardiovascular Biology and Pharmacology, Graduate School of Medicine, Ehime University, Shitsukawa, Ehime, Toon 791-0295, Japan

Received 6 May 2012; Accepted 8 June 2012

Academic Editor: David Bishop-Bailey

Copyright © 2012 Kousei Ohshima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ross, “Atherosclerosis—an inflammatory disease,” The New England Journal of Medicine, vol. 340, no. 2, pp. 115–126, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Marx, H. Duez, J. C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells,” Circulation Research, vol. 94, no. 9, pp. 1168–1178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Berger, T. E. Akiyama, and P. T. Meinke, “PPARs: therapeutic targets for metabolic disease,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 244–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Yu and J. K. Reddy, “Transcription coactivators for peroxisome proliferator-activated receptors,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 936–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Zoete, A. Grosdidier, and O. Michielin, “Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 915–925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999. View at Google Scholar · View at Scopus
  8. S. M. Rangwala and M. A. Lazar, “Peroxisome proliferator-activated receptor γ in diabetes and metabolism,” Trends in Pharmacological Sciences, vol. 25, no. 6, pp. 331–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lehrke and M. A. Lazar, “The many faces of PPARγ,” Cell, vol. 123, no. 6, pp. 993–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. X. Rong, Y. Qiu, M. K. Hansen et al., “Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone,” Diabetes, vol. 56, no. 7, pp. 1751–1760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. W. Engstrom, L. Bober, S. C. Chen et al., “Kinetic assessment and therapeutic modulation of metabolic and inflammatory profiles in mice on a high-fat and cholesterol diet,” PPAR Research, vol. 2010, Article ID 970164, 13 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Y. Song, Y. Gao, C. Wang et al., “Rosiglitazone reduces fatty acid translocase and increases AMPK in skeletal muscle in aged rats: a possible mechanism to prevent high-fat-induced insulin resistance,” Chinese Medical Journal, vol. 123, no. 17, pp. 2384–2391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Foryst-Ludwig, M. Hartge, M. Clemenz et al., “PPARgamma activation attenuates T-lymphocyte-dependent inflammation of adipose tissue and development of insulin resistance in obese mice,” Cardiovascular Diabetology, vol. 9, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Dormandy, B. Charbonnel, D. J. Eckland et al., “Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): a randomised controlled trial,” The Lancet, vol. 366, no. 9493, pp. 1279–1289, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. H. C. Gerstein, S. Yusuf, J. Bosch et al., “Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial,” The Lancet, vol. 368, no. 9541, pp. 1096–1105, 2006. View at Publisher · View at Google Scholar
  16. S. E. Kahn, S. M. Haffner, M. A. Heise et al., “Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy,” The New England Journal of Medicine, vol. 355, no. 23, pp. 2427–2443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. E. Nissen, S. J. Nicholls, K. Wolski et al., “Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial,” Journal of the American Medical Association, vol. 299, no. 13, pp. 1561–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kanda, J. D. Brown, G. Orasanu et al., “PPARγ in the endothelium regulates metabolic responses to high-fat diet in mice,” Journal of Clinical Investigation, vol. 119, no. 1, pp. 110–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Kleinhenz, D. J. Kleinhenz, S. You et al., “Disruption of endothelial peroxisome proliferator-activated receptor-γ reduces vascular nitric oxide production,” American Journal of Physiology, vol. 297, no. 5, pp. H1647–H1654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Qu, Y. M. Shah, S. K. Manna, and F. J. Gonzalez, “Disruption of endothelial peroxisome proliferator-activated receptor gamma accelerates diet-induced atherogenesis in LDL receptor-null mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 1, pp. 65–73, 2012. View at Google Scholar
  21. N. Wang, L. Verna, N. G. Chen et al., “Constitutive activation of peroxisome proliferator-activated receptor-γ suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells,” The Journal of Biological Chemistry, vol. 277, no. 37, pp. 34176–34181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. D. S. Straus and C. K. Glass, “Anti-inflammatory actions of PPAR ligands: new insights on cellular and molecular mechanisms,” Trends in Immunology, vol. 28, no. 12, pp. 551–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Z. Duan, M. G. Usher, and R. M. Mortensen, “Peroxisome proliferator-activated receptor-γ-mediated effects in the vasculature,” Circulation Research, vol. 102, no. 3, pp. 283–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ricote, J. Huang, L. Fajas et al., “Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7614–7619, 1998. View at Google Scholar · View at Scopus
  26. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. D. Stout and J. Suttles, “Functional plasticity of macrophages: reversible adaptation to changing microenvironments,” Journal of Leukocyte Biology, vol. 76, no. 3, pp. 509–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Jiang, A. T. Ting, and B. Seed, “PPAR-γ agonists inhibit production of monocyte inflammatory cytokines,” Nature, vol. 391, no. 6662, pp. 82–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. U. Kintscher, S. Goetze, S. Wakino et al., “Peroxisome proliferator-activated receptor and retinoid X receptor ligands inhibit monocyte chemotactic protein-1-directed migration of monocytes,” European Journal of Pharmacology, vol. 401, no. 3, pp. 259–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J. T. Huang, J. S. Welch, M. Ricote et al., “Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase,” Nature, vol. 400, no. 6742, pp. 378–382, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Vats, L. Mukundan, J. I. Odegaard et al., “Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation,” Cell Metabolism, vol. 4, no. 1, pp. 13–24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Bouhlel, B. Derudas, E. Rigamonti et al., “PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties,” Cell Metabolism, vol. 6, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Tontonoz, L. Nagy, J. G. A. Alvarez, V. A. Thomazy, and R. M. Evans, “PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL,” Cell, vol. 93, no. 2, pp. 241–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Nagy, P. Tontonoz, J. G. A. Alvarez, H. Chen, and R. M. Evans, “Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ,” Cell, vol. 93, no. 2, pp. 229–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. I. C. Kavanagh, C. E. Symes, P. Renaudin et al., “Degree of oxidation of low density lipoprotein affects expression of CD36 and PPARγ, but not cytokine production, by human monocyte-macrophages,” Atherosclerosis, vol. 168, no. 2, pp. 271–282, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Westendorf, J. Graessler, and S. Kopprasch, “Hypochlorite-oxidized low-density lipoprotein upregulates CD36 and PPARγ mRNA expression and modulates SR-BI gene expression in murine macrophages,” Molecular and Cellular Biochemistry, vol. 277, no. 1-2, pp. 143–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Chawla, W. A. Boisvert, C. H. Lee et al., “A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis,” Molecular Cell, vol. 7, no. 1, pp. 161–171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Chinetti, S. Lestavel, V. Bocher et al., “PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway,” Nature Medicine, vol. 7, no. 1, pp. 53–58, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Cunard, M. Ricote, D. DiCampli et al., “Regulation of cytokine expression by ligands of peroxisome proliferator activated receptors,” Journal of Immunology, vol. 168, no. 6, pp. 2795–2802, 2002. View at Google Scholar · View at Scopus
  42. X. Y. Yang, L. H. Wang, T. Chen et al., “Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. PPARγ co-association with transcription factor NFAT,” The Journal of Biological Chemistry, vol. 275, no. 7, pp. 4541–4544, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. R. B. Clark, D. Bishop-Bailey, T. Estrada-Hernandez, T. Hla, L. Puddington, and S. J. Padula, “The nuclear receptor PPARγ and immunoregulation: PPARγ mediates inhibition of helper T cell responses,” Journal of Immunology, vol. 164, no. 3, pp. 1364–1371, 2000. View at Google Scholar · View at Scopus
  44. N. Marx, B. Kehrle, K. Kohlhammer et al., “PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis,” Circulation Research, vol. 90, no. 6, pp. 703–710, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. L. J. Saubermann, A. Nakajima, K. Wada et al., “Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis,” Inflammatory Bowel Diseases, vol. 8, no. 5, pp. 330–339, 2002. View at Google Scholar · View at Scopus
  46. L. Klotz, S. Burgdorf, I. Dani et al., “The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity,” The Journal of Experimental Medicine, vol. 206, no. 10, pp. 2079–2089, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. George, “Mechanisms of Disease: the evolving role of regulatory T cells in atherosclerosis,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 9, pp. 531–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. E. A. Wohlfert, F. C. Nichols, E. Nevius, and R. B. Clark, “Peroxisome proliferator-activated receptor γ (PPARγ) and immunoregulation: enhancement of regulatory T cells through PPARγ- dependent and -independent mechanisms,” Journal of Immunology, vol. 178, no. 7, pp. 4129–4135, 2007. View at Google Scholar · View at Scopus
  49. J. Lei, H. Hasegawa, T. Matsumoto, and M. Yasukawa, “Peroxisome proliferator-activated receptor α and γ agonists together with TGF-β convert human CD4+CD25- T cells into functional Foxp3+ regulatory T cells,” Journal of Immunology, vol. 185, no. 12, pp. 7186–7198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Kyaw, P. Tipping, B. H. Toh, and A. Bobik, “Current understanding of the role of B cell subsets and intimal and adventitial B cells in atherosclerosis,” Current Opinion in Lipidology, vol. 22, no. 5, pp. 373–379, 2011. View at Publisher · View at Google Scholar
  51. T. W. Lebien and T. F. Tedder, “B lymphocytes: how they develop and function,” Blood, vol. 112, no. 5, pp. 1570–1580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Galkina and K. Ley, “Immune and inflammatory mechanisms of atherosclerosis,” Annual Review of Immunology, vol. 27, pp. 165–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. C. J. Binder, “Natural IgM antibodies against oxidation-specific epitopes,” Journal of Clinical Immunology, vol. 30, no. 1, pp. S56–S60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. D. P. Harris, L. Haynes, P. C. Sayles et al., “Reciprocal regulation of polarized cytokine production by effector B and T cells,” Nature Immunology, vol. 1, no. 6, pp. 475–482, 2000. View at Google Scholar · View at Scopus
  55. A. Mizoguchi and A. K. Bhan, “A case for regulatory B cells,” Journal of Immunology, vol. 176, no. 2, pp. 705–710, 2006. View at Google Scholar · View at Scopus
  56. P. Serra and P. Santamaria, “To “B” regulated: B cells as members of the regulatory workforce,” Trends in Immunology, vol. 27, no. 1, pp. 7–10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. J. D. Bouaziz, K. Yanaba, and T. F. Tedder, “Regulatory B cells as inhibitors of immune responses and inflammation,” Immunological Reviews, vol. 224, no. 1, pp. 201–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. F. E. Lund, “Cytokine-producing B lymphocytes—key regulators of immunity,” Current Opinion in Immunology, vol. 20, no. 3, pp. 332–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Mauri and M. R. Ehrenstein, “The “short” history of regulatory B cells,” Trends in Immunology, vol. 29, no. 1, pp. 34–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Padilla, K. Kaur, H. J. Cao, T. J. Smith, and R. P. Phipps, “Peroxisome proliferator activator receptor-γ agonists and 15-deoxy-Δ12,14-PGJ2 induce apoptosis in normal and malignant B-lineage cells,” Journal of Immunology, vol. 165, no. 12, pp. 6941–6948, 2000. View at Google Scholar · View at Scopus
  61. J. Padilla, E. Leung, and R. P. Phipps, “Human B lymphocytes and B lymphomas express PPAR-γ and are killed by PPAR-γ agonists,” Clinical Immunology, vol. 103, no. 1, pp. 22–33, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. J. J. Schlezinger, B. A. Jensen, K. K. Mann, H. Y. Ryu, and D. H. Sherr, “Peroxisome proliferator-activated receptor γ-mediated NF-κB activation and apoptosis in pre-B cells,” Journal of Immunology, vol. 169, no. 12, pp. 6831–6841, 2002. View at Google Scholar · View at Scopus
  63. J. J. Schlezinger, G. J. Howard, C. H. Hurst et al., “Environmental and endogenous peroxisome proliferator-activated receptor γ agonists induce bone marrow B cell growth arrest and apoptosis: interactions between mono(2-ethylhexyl)phthalate, 9-cis-retinoic acid, and 15-deoxy-Δ12,14-prostaglandin J2,” Journal of Immunology, vol. 173, no. 5, pp. 3165–3177, 2004. View at Google Scholar · View at Scopus
  64. R. Piva, P. Gianferretti, A. Ciucci, R. Taulli, G. Belardo, and M. G. Santoro, “15-Deoxy-Δ12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-κB activity and down-regulation of antiapoptotic proteins,” Blood, vol. 105, no. 4, pp. 1750–1758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. D. M. Ray, F. Akbiyik, S. H. Bernstein, and R. P. Phipps, “CD40 engagement prevents peroxisome proliferator-activated receptor γ agonist-induced apoptosis of B lymphocytes and B lymphoma cells by an NF-κB-dependent mechanism,” Journal of Immunology, vol. 174, no. 7, pp. 4060–4069, 2005. View at Google Scholar · View at Scopus
  66. J. J. Schlezinger, J. K. Emberley, and D. H. Sherr, “Activation of multiple mitogen-activated protein kinases in pro/pre-B cells by GW7845, a peroxisome proliferator-activated receptor γ agonist, and their contribution to GW7845-induced apoptosis,” Toxicological Sciences, vol. 92, no. 2, pp. 433–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. T. M. Garcia-Bates, C. J. Baglole, M. P. Bernard, T. I. Murant, P. J. Simpson-Haidaris, and R. P. Phipps, “Peroxisome proliferator-activated receptor γ ligands enhance human B cell antibody production and differentiation,” Journal of Immunology, vol. 183, no. 11, pp. 6903–6912, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. E. K. Koltsova and K. Ley, “How dendritic cells shape atherosclerosis,” Trends in Immunology, vol. 32, no. 11, pp. 540–547, 2011. View at Publisher · View at Google Scholar
  69. H. D. Manthey and A. Zernecke, “Dendritic cells in atherosclerosis: functions in immune regulation and beyond,” Thrombosis and Haemostasis, vol. 106, no. 5, pp. 772–778, 2011. View at Publisher · View at Google Scholar
  70. E. A. van Vre, I. van Brussel, J. M. Bosmans, C. J. Vrints, and H. Bult, “Dendritic cells in human atherosclerosis: from circulation to atherosclerotic plaques,” Mediators of Inflammation, vol. 2011, Article ID 941396, 13 pages, 2011. View at Publisher · View at Google Scholar
  71. E. Galkina, A. Kadl, J. Sanders, D. Varughese, I. J. Sarembock, and K. Ley, “Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent,” The Journal of Experimental Medicine, vol. 203, no. 5, pp. 1273–1282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Liu, Y. R. A. Yu, J. A. Spencer et al., “CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 2, pp. 243–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Weber, S. Meiler, Y. Döring et al., “CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2898–2910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Yilmaz, M. Lochno, F. Traeg et al., “Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques,” Atherosclerosis, vol. 176, no. 1, pp. 101–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. V. Bobryshev, “Dendritic cells in atherosclerosis: current status of the problem and clinical relevance,” European Heart Journal, vol. 26, no. 17, pp. 1700–1704, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Erbel, K. Sato, F. B. Meyer et al., “Functional profile of activated dendritic cells in unstable atherosclerotic plaque,” Basic Research in Cardiology, vol. 102, no. 2, pp. 123–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. R. M. Steinman and H. Hemmi, “Dendritic cells: translating innate to adaptive immunity,” Current Topics in Microbiology and Immunology, vol. 311, pp. 17–58, 2006. View at Google Scholar · View at Scopus
  78. J. Jongstra-Bilen, M. Haidari, S. N. Zhu, M. Chen, D. Guha, and M. I. Cybulsky, “Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis,” The Journal of Experimental Medicine, vol. 203, no. 9, pp. 2073–2083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. Z. Shaposhnik, X. Wang, M. Weinstein, B. J. Bennett, and A. J. Lusis, “Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 3, pp. 621–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. S. N. Zhu, M. Chen, J. Jongstra-Bilen, and M. I. Cybulsky, “GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions,” The Journal of Experimental Medicine, vol. 206, no. 10, pp. 2141–2149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. K. E. Paulson, S. N. Zhu, M. Chen, S. Nurmohamed, J. Jongstra-Bilen, and M. I. Cybulsky, “Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis,” Circulation Research, vol. 106, no. 2, pp. 383–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. I. Miller, S. H. Choi, P. Wiesner et al., “Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity,” Circulation Research, vol. 108, no. 2, pp. 235–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Faveeuw, S. Fougeray, V. Angeli et al., “Peroxisome proliferator-activated receptor γ activators inhibit interleukin-12 production in murine dendritic cells,” FEBS Letters, vol. 486, no. 3, pp. 261–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Gosset, A. S. Charbonnier, P. Delerive et al., “Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells,” European Journal of Immunology, vol. 31, no. 10, pp. 2857–2865, 2001. View at Publisher · View at Google Scholar
  85. A. Nencioni, F. Grünebach, A. Zobywlaski, C. Denzlinger, W. Brugger, and P. Brossart, “Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor γ,” Journal of Immunology, vol. 169, no. 3, pp. 1228–1235, 2002. View at Google Scholar · View at Scopus
  86. M. A. Jakobsen, R. K. Petersen, K. Kristiansen, M. Lange, and S. T. Lillevang, “Peroxisome proliferator-activated receptor α, δ, γ1 and γ2 expressions are present in human monocyte-derived dendritic cells and modulate dendritic cell maturation by addition of subtype-specific ligands,” Scandinavian Journal of Immunology, vol. 63, no. 5, pp. 330–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. I. Szatmari, E. Rajnavolgyi, and L. Nagy, “PPARγ, a lipid-activated transcription factor as a regulator of dendritic cell function,” Annals of the New York Academy of Sciences, vol. 1088, pp. 207–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. L. Klotz, I. Dani, F. Edenhofer et al., “Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy,” Journal of Immunology, vol. 178, no. 4, pp. 2122–2231, 2007. View at Google Scholar
  89. I. Szatmari, D. Töröcsik, M. Agostini et al., “PPARγ regulates the function of human dendritic cells primarily by altering lipid metabolism,” Blood, vol. 110, no. 9, pp. 3271–3280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. F. Zapata-Gonzalez, F. Rueda, J. Petriz et al., “9-cis-Retinoic Acid (9cRA), a Retinoid X Receptor (RXR) ligand, exerts immunosuppressive effects on dendritic cells by RXR-dependent activation: inhibition of peroxisome proliferator-activated receptor γ blocks some of the 9cRA activities, and precludes them to mature phenotype development,” Journal of Immunology, vol. 178, no. 10, pp. 6130–6139, 2007. View at Google Scholar · View at Scopus
  91. M. Drechsler, Y. Doring, R. T. Megens, and O. Soehnlein, “Neutrophilic granulocytes—promiscuous accelerators of atherosclerosis,” Thrombosis and Haemostasis, vol. 106, no. 5, pp. 839–848, 2011. View at Publisher · View at Google Scholar
  92. C. Weber and H. Noels, “Atherosclerosis: current pathogenesis and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp. 1410–1422, 2011. View at Publisher · View at Google Scholar
  93. C. Weber, A. Zernecke, and P. Libby, “The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models,” Nature Reviews Immunology, vol. 8, no. 10, pp. 802–815, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Zernecke, I. Bot, Y. Djalali-Talab et al., “Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis,” Circulation Research, vol. 102, no. 2, pp. 209–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. P. Rotzius, S. Thams, O. Soehnlein et al., “Distinct infiltration of neutrophils in lesion shoulders in ApoE-/- mice,” The American Journal of Pathology, vol. 177, no. 1, pp. 493–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Drechsler, R. T. A. Megens, M. van Zandvoort, C. Weber, and O. Soehnlein, “Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis,” Circulation, vol. 122, no. 18, pp. 1837–1845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. O. Soehnlein and L. Lindbom, “Phagocyte partnership during the onset and resolution of inflammation,” Nature Reviews Immunology, vol. 10, no. 6, pp. 427–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. E. Greene, B. Blumberg, O. W. McBride et al., “isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping,” Gene Expression, vol. 4, no. 4-5, pp. 281–299, 1995. View at Google Scholar · View at Scopus
  99. S. Vaidya, E. P. Somers, S. D. Wright, P. A. Detmers, and V. S. Bansal, “15-deoxy-Δ12,14-prostaglandin J2 inhibits the β2 integrin- dependent oxidative burst: involvement of a mechanism distinct from peroxisome proliferator-activated receptor γ ligation,” Journal of Immunology, vol. 163, no. 11, pp. 6187–6192, 1999. View at Google Scholar · View at Scopus
  100. M. A. Birrell, H. J. Patel, K. McCluskie et al., “PPAR-γ agonists as therapy for diseases involving airway neutrophilia,” European Respiratory Journal, vol. 24, no. 1, pp. 18–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Imamoto, N. Yoshida, K. Uchiyama et al., “Inhibitory effect of pioglitazone on expression of adhesion molecules on neutrophils and endothelial cells,” BioFactors, vol. 20, no. 1, pp. 37–47, 2004. View at Google Scholar · View at Scopus
  102. D. Liu, B. X. Zeng, S. H. Zhang, and S. L. Yao, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor γ, reduces pulmonary inflammatory response in a rat model of endotoxemia,” Inflammation Research, vol. 54, no. 11, pp. 464–470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón De La Lastra, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces chronic colonic inflammation in rats,” Biochemical Pharmacology, vol. 69, no. 12, pp. 1733–1744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. M. H. Napimoga, S. M. Vieira, D. Dal-Secco et al., “Peroxisome proliferator-activated receptor-γ ligand, 15-deoxy-Δ12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway,” Journal of Immunology, vol. 180, no. 1, pp. 609–617, 2008. View at Google Scholar · View at Scopus
  105. S. Singh, Y. K. Loke, and C. D. Furberg, “Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1189–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. S. E. Nissen and K. Wolski, “Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality,” Archives of Internal Medicine, vol. 170, no. 14, pp. 1191–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. A. M. Lincoff, K. Wolski, S. J. Nicholls, and S. E. Nissen, “Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials,” Journal of the American Medical Association, vol. 298, no. 10, pp. 1180–1188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Singh, Y. K. Loke, and C. D. Furberg, “Thiazolidinediones and heart failure: a teleo-analysis,” Diabetes Care, vol. 30, no. 8, pp. 2148–2153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. K. Loke, C. S. Kwok, and S. Singh, “Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies,” British Medical Journal, vol. 342, Article ID d1309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Cohen, “Insiders criticise FDA's decision not to withdraw rosiglitazone,” British Medical Journal, vol. 341, Article ID c5333, 2010. View at Publisher · View at Google Scholar · View at Scopus