Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 641917, 11 pages
http://dx.doi.org/10.1155/2012/641917
Review Article

ABO Blood Groups and Cardiovascular Diseases

1Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
2Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-5158, USA

Received 20 June 2012; Revised 25 August 2012; Accepted 1 September 2012

Academic Editor: Masaki Mogi

Copyright © 2012 Hanrui Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. I. El Hajj, J. G. Hashash, E. M. K. Baz, H. Abdul-Baki, and A. I. Sharara, “ABO blood group and gastric cancer: rekindling an old fire?” Southern Medical Journal, vol. 100, no. 7, pp. 726–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Demir, A. Tezel, R. Orbak, A. Eltas, C. Kara, and F. Kavrut, “The effect of ABO blood types on periodontal status,” European Journal of Dentistry, vol. 1, no. 3, pp. 139–143, 2007. View at Google Scholar
  3. M. A. Qureshi and R. Bhatti, “Frequency of abo blood groups among the diabetes mellitus type 2 patients,” Journal of the College of Physicians and Surgeons Pakistan, vol. 13, no. 8, pp. 453–455, 2003. View at Google Scholar · View at Scopus
  4. M. P. Reilly, M. Li, J. He et al., “Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies,” The Lancet, vol. 377, no. 9763, pp. 383–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Woolf, “On estimating the relation between blood group and disease,” Annals of Human Genetics, vol. 19, no. 4, pp. 251–253, 1955. View at Publisher · View at Google Scholar
  6. H. Jick, D. Slone, B. Westerholm et al., “Venous thromboembolic disease and ABO blood type. A cooperative study,” The Lancet, vol. 1, no. 7594, pp. 539–542, 1969. View at Google Scholar · View at Scopus
  7. P. P. Green, P. M. Mannucci, and E. Briet, “Carrier detection in hemophilia A: a cooperative international study. II. The efficacy of a universal discriminant,” Blood, vol. 67, no. 6, pp. 1560–1567, 1986. View at Google Scholar · View at Scopus
  8. J. H. Medalie, C. Levene, C. Papier et al., “Blood groups, myocardial infarction and angina pectoris among 10,000 adult males,” New England Journal of Medicine, vol. 285, no. 24, pp. 1348–1353, 1971. View at Google Scholar · View at Scopus
  9. T. R. Ketch, S. J. Turner, M. T. Sacrinty et al., “ABO blood types: influence on infarct size, procedural characteristics and prognosis,” Thrombosis Research, vol. 123, no. 2, pp. 200–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Erikssen, E. Thaulow, and H. Stormorken, “ABO blood groups and coronary heart disease (CHD). A study in subjects with severe and latent CHD,” Thrombosis and Haemostasis, vol. 43, no. 2, pp. 137–140, 1980. View at Google Scholar · View at Scopus
  11. U. E. Nydegger, W. A. Wuillemin, F. Julmy, B. J. Meyer, and T. P. Carrel, “Association of ABO histo-blood group B allele with myocardial infarction,” European Journal of Immunogenetics, vol. 30, no. 3, pp. 201–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Platt, W. Muhlberg, L. Kiehl, and R. Schmitt-Ruth, “ABO blood group system, age, sex, risk factors and cardiac infarction,” Archives of Gerontology and Geriatrics, vol. 4, no. 3, pp. 241–249, 1985. View at Google Scholar · View at Scopus
  13. I. Sari, O. Ozer, V. Davutoglu, S. Gorgulu, M. Eren, and M. Aksoy, “ABO blood group distribution and major cardiovascular risk factors in patients with acute myocardial infarction,” Blood Coagulation and Fibrinolysis, vol. 19, no. 3, pp. 231–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Wu, N. Bayoumi, M. A. Vickers, and P. Clark, “ABO(H) blood groups and vascular disease: a systematic review and meta-analysis,” Journal of Thrombosis and Haemostasis, vol. 6, no. 1, pp. 62–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Oriol, R. Mollicone, P. Coullin, A. M. Dalix, and J. J. Candelier, “Genetic regulation of the expression of ABH and Lewis antigens in tissues,” APMIS, Supplement, vol. 100, no. 27, pp. 28–38, 1992. View at Google Scholar · View at Scopus
  16. E. Hosoi, “Biological and clinicel aspects of ABO blood group system,” Journal of Medical Investigation, vol. 55, no. 3-4, pp. 174–182, 2008. View at Google Scholar · View at Scopus
  17. P. V. Jenkins and J. S. O'Donnell, “ABO blood group determines plasma von Willebrand factor levels: a biologic function after all?” Transfusion, vol. 46, no. 10, pp. 1836–1844, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Storry and M. L. Olsson, “The ABO blood group system revisited: a review and update,” Immunohematology, vol. 25, no. 2, pp. 48–59, 2009. View at Google Scholar · View at Scopus
  19. J. B. Lowe, “The blood group-specific human glycosyltransferases,” Bailliere's Clinical Haematology, vol. 6, no. 2, pp. 465–492, 1993. View at Google Scholar · View at Scopus
  20. T. Zeller, S. Blankenberg, and P. Diemert, “Genomewide association studies in cardiovascular disease—an update 2011,” Clinical Chemistry, vol. 58, no. 1, pp. 92–103, 2012. View at Publisher · View at Google Scholar
  21. L. Qi, M. C. Cornelis, P. Kraft et al., “Genetic variants in ABO blood group region, plasma soluble E-selectin levels and risk of type 2 diabetes,” Human Molecular Genetics, vol. 19, no. 9, Article ID ddq057, pp. 1856–1862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. D. Paterson, M. F. Lopes-Virella, D. Waggott et al., “Genome-wide association identifies the ABO blood group as a major locus associated with serum levels of soluble E-selectin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 11, pp. 1958–1967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Heit, S. M. Armasu, Y. W. Asmann et al., “A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q,” Journal of Thrombosis and Haemostasis, vol. 10, no. 8, pp. 1521–1531, 2012. View at Publisher · View at Google Scholar
  24. C. M. Chung, R. Y. Wang, J. W. Chen et al., “A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor,” Pharmacogenomics Journal, vol. 10, no. 6, pp. 537–544, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Barbalic, J. Dupuis, A. Dehghan et al., “Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels,” Human Molecular Genetics, vol. 19, no. 9, Article ID ddq061, pp. 1863–1872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. M. Teslovich, K. Musunuru, A. V. Smith et al., “Biological, clinical and population relevance of 95 loci for blood lipids,” Nature, vol. 466, no. 7307, pp. 707–713, 2010. View at Publisher · View at Google Scholar
  27. S. Kiechl, G. Pare, M. Barbalic et al., “Association of variation at the ABO locus with circulating levels of soluble intercellular adhesion molecule-1, soluble P-selectin, and soluble E-selectin: a meta-analysis,” Circulation, vol. 4, no. 6, pp. 681–686, 2011. View at Google Scholar
  28. D. Zabaneh, T. R. Gaunt, M. Kumari et al., “Genetic variants associated with von Willebrand factor levels in healthy men and women identified using the humanCVD beadchip,” Annals of Human Genetics, vol. 75, no. 4, pp. 456–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. L. Wiggins, N. L. Smith, N. L. Glazer et al., “ABO genotype and risk of thrombotic events and hemorrhagic stroke,” Journal of Thrombosis and Haemostasis, vol. 7, no. 2, pp. 263–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Paré, P. M. Ridker, L. Rose et al., “Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci,” PLoS Genetics, vol. 7, no. 4, Article ID e1001374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Paré, D. I. Chasman, M. Kellogg et al., “Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women,” PLoS Genetics, vol. 4, no. 7, Article ID e1000118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. D. A. Tregouet, S. Heath, N. Saut et al., “Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from aGWAS approach,” Blood, vol. 113, no. 21, pp. 5298–5303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Campos, W. Sun, F. Yu et al., “Genetic determinants of plasma von Willebrand factor antigen levels: a target gene SNP and haplotype analysis of ARIC cohort,” Blood, vol. 117, no. 19, pp. 5224–5230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. N. L. Smith, M. H. Chen, A. Dehghan et al., “Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium,” Circulation, vol. 121, no. 12, pp. 1382–1392, 2010. View at Publisher · View at Google Scholar
  35. D. Teupser, R. Baber, U. Ceglarek et al., “Genetic regulation of serum phytosterol levels and risk of coronary artery disease,” Circulation, vol. 3, no. 4, pp. 331–339, 2010. View at Google Scholar
  36. J. C. Gill, J. Endres-Brooks, and P. J. Bauer, “The effect of ABO blood group on the diagnosis of von Willebrand disease,” Blood, vol. 69, no. 6, pp. 1691–1695, 1987. View at Google Scholar · View at Scopus
  37. D. R. Rios, A. P. Fernandes, R. C. Figueiredo et al., “Relationship between ABO blood groups and von Willebrand factor, ADAMTS13 and factor VIII in patients undergoing hemodialysis,” Journal of Thrombosis and Thrombolysis, vol. 33, no. 4, pp. 416–421, 2012. View at Publisher · View at Google Scholar
  38. J. C. Souto, L. Almasy, J. M. Soria et al., “Genome-wide linkage analysis of von Willebrand factor plasma levels: results from the GAIT project,” Thrombosis and Haemostasis, vol. 89, no. 3, pp. 468–474, 2003. View at Google Scholar · View at Scopus
  39. V. Terraube, J. S. O'Donnell, and P. V. Jenkins, “Factor VIII and von Willebrand factor interaction: biological, clinical and therapeutic importance,” Haemophilia, vol. 16, no. 1, pp. 3–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. R. A. Kraaijenhagen, P. S. In 'T Anker, M. M. W. Koopman et al., “High plasma concentration of factor VIIIc is a major risk factor for venous thromboembolism,” Thrombosis and Haemostasis, vol. 83, no. 1, pp. 5–9, 2000. View at Google Scholar · View at Scopus
  41. T. Koster, A. D. Blann, E. Briet, J. P. Vandenbroucke, and F. R. Rosendaal, “Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis,” The Lancet, vol. 345, no. 8943, pp. 152–155, 1995. View at Google Scholar · View at Scopus
  42. F. I. Yamamoto, P. D. McNeill, and S. I. Hakomori, “Human histo-blood group A2 transferase coded by A2 allele, one of the A subtypes, is characterized by a single base deletion in the coding sequence, which results in an additional domain at the carboxyl terminal,” Biochemical and Biophysical Research Communications, vol. 187, no. 1, pp. 366–374, 1992. View at Google Scholar · View at Scopus
  43. V. M. Morelli, M. C. H. de Visser, N. H. van Tilburg et al., “ABO blood group genotypes, plasma von Willebrand factor levels and loading of von Willebrand factor with A and B antigens,” Thrombosis and Haemostasis, vol. 97, no. 4, pp. 534–541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. le Cessie, J. Debeij, F. R. Rosendaal, S. C. Cannegieter, and J. P. Vandenbroucke, “Quantification of bias in direct effects estimates due to different types of measurement error in the mediator,” Epidemiology, vol. 23, no. 4, pp. 551–560, 2012. View at Google Scholar
  45. V. M. Morelli, M. C. H. De Visser, H. L. Vos, R. M. Bertina, and F. R. Rosendaal, “ABO blood group genotypes and the risk of venous thrombosis: effect of factor V Leiden,” Journal of Thrombosis and Haemostasis, vol. 3, no. 1, pp. 183–185, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. W. Meade, J. A. Cooper, Y. Stirling, D. J. Howarth, V. Ruddock, and G. J. Miller, “Factor VIII, ABO blood group and the incidence of ischaemic heart disease,” British Journal of Haematology, vol. 88, no. 3, pp. 601–607, 1994. View at Google Scholar · View at Scopus
  47. R. J. Garrison, R. J. Havlik, R. B. Harris, M. Feinleib, W. B. Kannel, and S. J. Padgett, “ABO blood group and cardiovacular disease the Framingham study,” Atherosclerosis, vol. 25, no. 2-3, pp. 311–318, 1976. View at Google Scholar · View at Scopus
  48. N. Saha, C. C. S. Toh, and M. B. Ghosh, “Genetic association in myocardial infarction. Ethnicity; ABO, Rh, Le(a), Xg(a) blood groups; G6PD deficiency; and abnormal hemoglobins,” Journal of Medical Genetics, vol. 10, no. 4, pp. 340–345, 1973. View at Google Scholar · View at Scopus
  49. B. Bronte-Stewart, M. C. Botha, and L. H. Krut, “ABO blood groups in relation to ischaemic heart disease,” British Medical Journal, vol. 1, no. 5293, pp. 1646–1650, 1962. View at Google Scholar
  50. M. He, B. Wolpin, K. Rexrode et al., “ABO blood group and risk of coronary heart disease in two prospective cohort studies,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 9, pp. 2314–2320, 2012. View at Publisher · View at Google Scholar
  51. B. R. Curtis, J. T. Edwards, M. J. Hessner, J. P. Klein, and R. H. Aster, “Blood group A and B antigens are strongly expressed on platelets of some individuals,” Blood, vol. 96, no. 4, pp. 1574–1581, 2000. View at Google Scholar · View at Scopus
  52. D. Stockelberg, M. Hou, L. Rydberg, J. Kutti, and H. Wadenvik, “Evidence for an expression of blood group A antigen on platelet glycoproteins IV and V,” Transfusion Medicine, vol. 6, no. 3, pp. 243–248, 1996. View at Google Scholar · View at Scopus
  53. M. Hou, D. Stockelberg, L. Rydberg, J. Kutti, and H. Wadenvik, “Blood group A antigen expression in platelets is prominently associated with glycoprotein Ib and IIb. Evidence for an A1/A2 difference,” Transfusion Medicine, vol. 6, no. 1, pp. 51–59, 1996. View at Google Scholar · View at Scopus
  54. K. Ogasawara, J. Ueki, M. Takenaka, and K. Furihata, “Study on the expression of ABH antigens on platelets,” Blood, vol. 82, no. 3, pp. 993–999, 1993. View at Google Scholar · View at Scopus
  55. N. Gaudreault, N. Kumar, J. M. Posada et al., “ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 2, pp. 264–272, 2012. View at Publisher · View at Google Scholar
  56. T. Takeshi, N. Keisuke, I. Takaaki, Y. Makoto, and N. Tatsuji, “Involvement of adhesion molecule in in vitro plaque-like formation of macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide,” Journal of Periodontal Research, vol. 45, no. 4, pp. 550–556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Luo, H. Wang, M. K. Ohman et al., “P-selectin glycoprotein ligand-1 deficiency leads to cytokine resistance and protection against atherosclerosis in apolipoprotein E deficient mice,” Atherosclerosis, vol. 220, no. 1, pp. 110–117, 2012. View at Publisher · View at Google Scholar
  58. J. Kisucka, A. K. Chauhan, B. Q. Zhao et al., “Elevated levels of soluble P-selectin in mice alter blood-brain barrier function, exacerbate stroke, and promote atherosclerosis,” Blood, vol. 113, no. 23, pp. 6015–6022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. T. P. Johnston, “Poloxamer 407 increases soluble adhesion molecules, ICAM-1, VCAM-1 and E-selectin, in C57BL/6 mice,” Journal of Pharmacy and Pharmacology, vol. 61, no. 12, pp. 1681–1688, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. P. M. Ridker, C. H. Hennekens, B. Roitman-Johnson, M. J. Stampfer, and J. Allen, “Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men,” The Lancet, vol. 351, no. 9096, pp. 88–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. S. J. Hwang, C. M. Ballantyne, A. R. Sharrett et al., “Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study,” Circulation, vol. 96, no. 12, pp. 4219–4225, 1997. View at Google Scholar · View at Scopus
  62. M. F. Oliver, H. Geizerova, R. A. Cumming, and J. A. Heady, “Serum-cholesterol and ABO and rhesus blood-groups,” The Lancet, vol. 2, no. 7621, pp. 605–606, 1969. View at Google Scholar · View at Scopus
  63. M. J. Langman, P. C. Elwood, J. Foote, and D. R. Ryrie, “ABO and Lewis blood-groups and serum-cholesterol,” The Lancet, vol. 2, no. 7621, pp. 607–609, 1969. View at Google Scholar · View at Scopus
  64. C. Carpeggiani, M. Coceani, P. Landi, C. Michelassi, and A. L'Abbate, “ABO blood group alleles: a risk factor for coronary artery disease. An angiographic study,” Atherosclerosis, vol. 211, no. 2, pp. 461–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Contiero, G. E. Chinello, and M. Folin, “Serum lipids and lipoproteins associations with ABO blood groups,” Anthropologischer Anzeiger, vol. 52, no. 3, pp. 221–230, 1994. View at Google Scholar · View at Scopus
  66. D. I. Chasman, G. Paré, S. Mora et al., “Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis,” PLoS Genetics, vol. 5, no. 11, Article ID e1000730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. K. Chauhan, J. Kisucka, C. B. Lamb, W. Bergmeier, and D. D. Wagner, “Von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins,” Blood, vol. 109, no. 6, pp. 2424–2429, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. I. Tirado, J. Mateo, J. M. Soria et al., “The ABO blood group genotype and factor VIII levels as independent risk factors for venous thromboembolism,” Thrombosis and Haemostasis, vol. 93, no. 3, pp. 468–474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. P. M. Mannucci, C. Capoferri, and M. T. Canciani, “Plasma levels of von Willebrand factor regulate ADAMTS-13, its major cleaving protease,” British Journal of Haematology, vol. 126, no. 2, pp. 213–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. D. J. Bowen, “An influence of ABO blood group on the rate of proteolysis of von Willebrand factor by ADAMTS13,” Journal of Thrombosis and Haemostasis, vol. 1, no. 1, pp. 33–40, 2003. View at Google Scholar · View at Scopus
  71. I. Badirou, M. Kurdi, J. Rayes et al., “von Willebrand factor clearance does not involve proteolysis by ADAMTS-13,” Journal of Thrombosis and Haemostasis, vol. 8, no. 10, pp. 2338–2340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. R. T. McGrath, E. McRae, O. P. Smith, and J. S. O'Donnell, “Platelet von Willebrand factor—structure, function and biological importance,” British Journal of Haematology, vol. 148, no. 6, pp. 834–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. S. C. Barbaux, S. Blankenberg, H. J. Rupprecht et al., “Association between P-selectin gene polymorphisms and soluble P-selectin levels and their relation to coronary artery disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 10, pp. 1668–1673, 2001. View at Google Scholar · View at Scopus
  74. L. L. W. Cooling, K. Kelly, J. Barton, D. Hwang, T. A. W. Koerner, and J. D. Olson, “Determinants of ABH expression on human blood platelets,” Blood, vol. 105, no. 8, pp. 3356–3364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Cadroy, K. S. Sakariassen, J. P. Charlet, C. Thalamas, B. Boneu, and P. Sie, “Role of 4 platelet membrane glycoprotein polymorphisms on experimental arterial thrombus formation in men,” Blood, vol. 98, no. 10, pp. 3159–3161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Meisel, J. A. López, and K. Stangl, “Role of platelet glycoprotein polymorphisms in cardiovascular diseases,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 369, no. 1, pp. 38–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. A. M. Carter, M. W. Mansfield, and P. J. Grant, “Polymorphisms of platelet glycoproteins in relation to macrovascular disease in type 2 diabetes mellitus,” Diabetic Medicine, vol. 15, no. 4, pp. 315–319, 1998. View at Publisher · View at Google Scholar
  78. R. A. Dunstan, “Status of major red cell blood group antigens on neutrophils, lymphocytes and monocytes,” British Journal of Haematology, vol. 62, no. 2, pp. 301–309, 1986. View at Google Scholar · View at Scopus
  79. A. Varki, “Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 6, p. a005462, 2011. View at Publisher · View at Google Scholar