Table of Contents Author Guidelines Submit a Manuscript
International Journal of Vascular Medicine
Volume 2012, Article ID 648167, 9 pages
http://dx.doi.org/10.1155/2012/648167
Review Article

Recent Advances in Pharmacotherapy Development for Abdominal Aortic Aneurysm

1Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi 755-8505, Japan
2Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi 753-8502, Japan
3Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka 830-0011, Japan

Received 28 April 2012; Accepted 25 June 2012

Academic Editor: Rei Shibata

Copyright © 2012 Koichi Yoshimura and Hiroki Aoki. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sakalihasan, R. Limet, and O. D. Defawe, “Abdominal aortic aneurysm,” The Lancet, vol. 365, no. 9470, pp. 1577–1589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Anjum and J. T. Powell, “Is the incidence of abdominal aortic aneurysm declining in the 21st century? Mortality and hospital admissions for England &Wales and Scotland,” European Journal of Vascular and Endovascular Surgery, vol. 43, pp. 161–166, 2012. View at Google Scholar
  3. T. W. Rooke, A. T. Hirsch, S. Misra et al., “2011 ACCF/AHA Focused Update of the Guideline for the Management of patients with peripheral artery disease (Updating the 2005 Guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines,” Circulation, vol. 124, pp. 2020–2045, 2011. View at Publisher · View at Google Scholar
  4. R. W. Thompson, P. J. Geraghty, and J. K. Lee, “Abdominal aortic aneurysms: basic mechanisms and clinical implications,” Current Problems in Surgery, vol. 39, no. 2, pp. 110–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Aoki, K. Yoshimura, and M. Matsuzaki, “Turning back the clock: regression of abdominal aortic aneurysms via pharmacotherapy,” Journal of Molecular Medicine, vol. 85, no. 10, pp. 1077–1088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Tedesco and R. L. Dalman, “Arterial aneurysms,” in Vascular Surgery, J. L. Cronenwett and K. W. Johnston, Eds., pp. 117–130, Saunders, Philadelphia, Pa, USA, 2010. View at Google Scholar
  7. K. Yoshimura, H. Aoki, Y. Ikeda et al., “Development of pharmacological therapy for abdominal aortic aneurysms based on animal studies,” in Aortic Aneurysms, New Insights Into an Old Problem, N. Sakalihasan, Ed., Édition de I’Université de Liège, Liège, Belgium, 2008. View at Google Scholar
  8. J. A. Curci, S. Liao, M. D. Huffman, S. D. Shapiro, and R. W. Thompson, “Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms,” Journal of Clinical Investigation, vol. 102, no. 11, pp. 1900–1910, 1998. View at Google Scholar · View at Scopus
  9. J. A. Curci, B. T. Baxter, and R. W. Thompson, “Arterial aneurysms: etiologic considerations,” in Vascular Surgery, R. B. Ritherford, Ed., pp. 475–492, Saunders, Philadelphia, Pa, USA, 2005. View at Google Scholar
  10. K. Yoshimura, Y. Ikeda, and H. Aoki, “Innocent bystander? Intraluminal thrombus in abdominal aortic aneurysm,” Atherosclerosis, vol. 218, pp. 285–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Gavrila, W. G. Li, M. L. McCormick et al., “Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 8, pp. 1671–1677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Törnwall, J. Virtamo, J. K. Haukka, D. Albanes, and J. K. Huttunen, “α-Tocopherol (vitamin E) and β-carotene supplementation does not affect the risk for large abdominal aortic aneurysm in a controlled trial,” Atherosclerosis, vol. 157, no. 1, pp. 167–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. T. K. Nakahashi, K. Hoshina, P. S. Tsao et al., “Flow loading induces macrophage antioxidative gene expression in experimental aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 12, pp. 2017–2022, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Ailawadi, J. L. Eliason, K. J. Roelofs et al., “Gender differences in experimental aortic aneurysm formation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, pp. 2116–2122, 2004. View at Publisher · View at Google Scholar
  15. B. Martin-McNulty, D. M. Tham, V. Da Cunha et al., “17β-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 9, pp. 1627–1632, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Liao, M. Miralles, B. J. Kelley, J. A. Curci, M. Borhani, and R. W. Thompson, “Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors,” Journal of Vascular Surgery, vol. 33, no. 5, pp. 1057–1064, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. D. G. Hackam, D. Thiruchelvam, and D. A. Redelmeier, “Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study,” The Lancet, vol. 368, no. 9536, pp. 659–665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Sweeting, S. G. Thompson, L. C. Brown, R. M. Greenhalgh, and J. T. Powell, “Use of angiotensin converting enzyme inhibitors is associated with increased growth rate of abdominal aortic aneurysms,” Journal of Vascular Surgery, vol. 52, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Fujiwara, S. Shiraya, T. Miyake et al., “Inhibition of experimental abdominal aortic aneurysm in a rat model by the angiotensin receptor blocker valsartan,” International Journal of Molecular Medicine, vol. 22, no. 6, pp. 703–708, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Nagashima, Y. Aoka, Y. Sakomura et al., “A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall,” Journal of Vascular Surgery, vol. 36, no. 1, pp. 158–163, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. W. R. W. Wilson, J. Evans, P. R. F. Bell, and M. M. Thompson, “HMG-CoA reductase inhibitors (Statins) decrease MMP-3 and MMP-9 concentrations in abdominal aortic aneurysms,” European Journal of Vascular and Endovascular Surgery, vol. 30, no. 3, pp. 259–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Kudo, K. Yoshimura, and K. Hamano, “Simvastatin reduces secretion of monocyte chemoattractant proteins and matrix metalloproteinase-9 in human abdominal aortic aneurysms,” The Bulletin of the Yamaguchi Medical School, vol. 54, pp. 47–56, 2007. View at Google Scholar
  23. K. Kajimoto, K. Miyauchi, T. Kasai et al., “Short-term 20-mg atorvastatin therapy reduces key inflammatory factors including c-Jun N-terminal kinase and dendritic cells and matrix metalloproteinase expression in human abdominal aortic aneurysmal wall,” Atherosclerosis, vol. 206, no. 2, pp. 505–511, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Karrowni, S. Dughman, G. P. Hajj et al., “Statin therapy reduces growth of abdominal aortic aneurysms,” Journal of Investigative Medicine, vol. 59, pp. 1239–1243, 2011. View at Google Scholar
  25. F. J. V. Schlösser, M. J. D. Tangelder, H. J. M. Verhagen et al., “Growth predictors and prognosis of small abdominal aortic aneurysms,” Journal of Vascular Surgery, vol. 47, no. 6, pp. 1127–1133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Schouten, J. H. H. van Laanen, E. Boersma et al., “Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth,” European Journal of Vascular and Endovascular Surgery, vol. 32, no. 1, pp. 21–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Sukhija, W. S. Aronow, R. Sandhu, P. Kakar, and S. Babu, “Mortality and size of abdominal aortic aneurysm at long-term follow-up of patients not treated surgically and treated with and without statins,” American Journal of Cardiology, vol. 97, no. 2, pp. 279–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. E. F. Steinmetz, C. Buckley, M. L. Shames et al., “Treatment with simvastatin suppresses the development of experimental abdominal aortic aneurysms in normal and hypercholesterolemic mice,” Annals of Surgery, vol. 241, no. 1, pp. 92–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kalyanasundaram, J. R. Elmore, J. R. Manazer et al., “Simvastatin suppresses experimental aortic aneurysm expansion,” Journal of Vascular Surgery, vol. 43, no. 1, pp. 117–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Shiraya, T. Miyake, M. Aoki et al., “Inhibition of development of experimental aortic abdominal aneurysm in rat model by atorvastatin through inhibition of macrophage migration,” Atherosclerosis, vol. 202, no. 1, pp. 34–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Thompson, J. A. Cooper, M. Fabricius, S. E. Humphries, H. A. Ashton, and H. Hafez, “An analysis of drug modulation of abdominal aortic aneurysm growth through 25 years of surveillance,” Journal of Vascular Surgery, vol. 52, no. 1, pp. 55–61.e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. D. Ferguson, P. Clancy, B. Bourke et al., “Association of statin prescription with small abdominal aortic aneurysm progression,” American Heart Journal, vol. 159, no. 2, pp. 307–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Sun, G. K. Sukhova, M. Yang et al., “Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3359–3368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Tsuruda, J. Kato, K. Hatakeyama et al., “Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm,” Circulation Research, vol. 102, no. 11, pp. 1368–1377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. F. E. Parodi, D. Mao, T. L. Ennis, M. A. Bartoli, and R. W. Thompson, “Suppression of experimental abdominal aortic aneurysms in mice by treatment with pyrrolidine dithiocarbamate, an antioxidant inhibitor of nuclear factor-κB,” Journal of Vascular Surgery, vol. 41, no. 3, pp. 479–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Yoshimura, H. Aoki, Y. Ikeda et al., “Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase,” Nature Medicine, vol. 11, no. 12, pp. 1330–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Yoshimura, H. Aoki, Y. Ikeda, A. Furutani, K. Hamano, and M. Matsuzaki, “Identification of c-Jun N-terminal kinase as a therapeutic target for abdominal aortic aneurysm,” Annals of the New York Academy of Sciences, vol. 1085, pp. 403–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Petrinec, S. Liao, D. R. Holmes, J. M. Reilly, W. C. Parks, and R. W. Thompson, “Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase,” Journal of Vascular Surgery, vol. 23, no. 2, pp. 336–346, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Curci, D. Petrinec, S. Liao, L. M. Golub, and R. W. Thompson, “Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines,” Journal of Vascular Surgery, vol. 28, no. 6, pp. 1082–1093, 1998. View at Google Scholar · View at Scopus
  40. M. D. Huffman, J. A. Curci, G. Moore, D. B. Kerns, B. C. Starcher, and R. W. Thompson, “Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms,” Surgery, vol. 128, no. 3, pp. 429–438, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Sho, J. Chu, M. Sho et al., “Continuous periaortic infusion improves doxycycline efficacy in experimental aortic aneurysms,” Journal of Vascular Surgery, vol. 39, no. 6, pp. 1312–1321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Curci, D. Mao, D. G. Bohner et al., “Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms,” Journal of Vascular Surgery, vol. 31, no. 2, pp. 325–342, 2000. View at Google Scholar · View at Scopus
  43. B. T. Baxter, W. H. Pearce, E. A. Waltke et al., “Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study,” Journal of Vascular Surgery, vol. 36, no. 1, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Pyo, J. K. Lee, J. M. Shipley et al., “Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms,” Journal of Clinical Investigation, vol. 105, no. 11, pp. 1641–1649, 2000. View at Google Scholar · View at Scopus
  45. M. A. Bartoli, F. E. Parodi, J. Chu et al., “Localized administration of doxycycline suppresses aortic dilatation in an experimental mouse model of abdominal aortic aneurysm,” Annals of Vascular Surgery, vol. 20, no. 2, pp. 228–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. A. K. Prall, G. M. Longo, W. G. Mayhan et al., “Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice,” Journal of Vascular Surgery, vol. 35, no. 5, pp. 923–928, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. M. W. Manning, L. A. Cassis, and A. Daugherty, “Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 3, pp. 483–488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Vinh, T. A. Gaspari, H. B. Liu, L. F. Dousha, R. E. Widdop, and A. E. Dear, “A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice,” Journal of Vascular Research, vol. 45, no. 2, pp. 143–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Kaito, H. Urayama, and G. Watanabe, “Doxycycline treatment in a model of early abdominal aortic aneurysm,” Surgery Today, vol. 33, no. 6, pp. 426–433, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. U. Schönbeck and P. Libby, “Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents?” Circulation, vol. 109, no. 21, pp. II18–II26, 2004. View at Google Scholar · View at Scopus
  51. M. Takemoto and J. K. Liao, “Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1712–1719, 2001. View at Google Scholar · View at Scopus
  52. S. Nomura, K. Yoshimura, N. Akiyama et al., “HMG-CoA reductase inhibitors reduce matrix metalloproteinase-9 activity in human varicose veins,” European Surgical Research, vol. 37, no. 6, pp. 370–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. C. P. Twine and I. M. Williams, “Systematic review and meta-analysis of the effects of statin therapy on abdominal aortic aneurysms,” British Journal of Surgery, vol. 98, no. 3, pp. 346–353, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. M. M. McNally, S. C. Agle, F. M. Parker, W. M. Bogey, C. S. Powell, and M. C. Stoner, “Preoperative statin therapy is associated with improved outcomes and resource utilization in patients undergoing aortic aneurysm repair,” Journal of Vascular Surgery, vol. 51, no. 6, pp. 1390–1396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. X. Wang, B. Martin-McNulty, V. Da Cunha et al., “Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis,” Circulation, vol. 111, no. 17, pp. 2219–2226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Nakashima, M. Aoki, T. Miyake et al., “Inhibition of experimental abdominal aortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity of nuclear factor κB and ets transcription factors,” Circulation, vol. 109, no. 1, pp. 132–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Miyake, M. Aoki, H. Masaki et al., “Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor κB and ets in a rabbit model,” Circulation Research, vol. 101, no. 11, pp. 1175–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Yoshimura, H. Aoki, Y. Ikeda, A. Furutani, K. Hamano, and M. Matsuzaki, “Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase in mice,” Annals of the New York Academy of Sciences, vol. 1085, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. R. W. Thompson, “Aneurysm treatments expand,” Nature Medicine, vol. 11, no. 12, pp. 1279–1281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Verma and T. F. Lindsay, “Regression of aortic aneurysms through pharmacologic therapy?” New England Journal of Medicine, vol. 354, no. 19, pp. 2067–2068, 2006. View at Google Scholar · View at Scopus
  61. G. Matthew Longo, W. Xiong, T. C. Greiner, Y. Zhao, N. Fiotti, and B. Timothy Baxter, “Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 625–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Mosorin, J. Juvonen, F. Biancari et al., “Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study,” Journal of Vascular Surgery, vol. 34, no. 4, pp. 606–610, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. H. N. Lindeman, H. Abdul-Hussien, J. H. Van Bockel, R. Wolterbeek, and R. Kleemann, “Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm doxycycline selectively depletes aortic wall neutrophils and cytotoxic t cells,” Circulation, vol. 119, no. 16, pp. 2209–2216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. J. M. Mäki, J. Räsänen, H. Tikkanen et al., “Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice,” Circulation, vol. 106, no. 19, pp. 2503–2509, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Onoda, K. Yoshimura, H. Aoki et al., “Lysyl oxidase resolves inflammation by reducing monocyte chemoattractant protein-1 in abdominal aortic aneurysm,” Atherosclerosis, vol. 208, no. 2, pp. 366–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Deen, H. Gifford S, B. Andreas et al., “Methods and devices for treating aneurysms, WO/2004/004603,” 2004.
  67. H. Aoki, K. Yoshimura, H. Tsutsumi et al., “Drug delivery system, WO/2009/082014,” 2009.
  68. J. Golledge and J. T. Powell, “Medical management of abdominal aortic aneurysm,” European Journal of Vascular and Endovascular Surgery, vol. 34, no. 3, pp. 267–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. F. A. Hellenthal, W. A. Buurman, W. K. Wodzig, and G. W. Schurink, “Biomarkers of AAA progression. Part 1: extracellular matrix degeneration,” Nature Reviews.Cardiology, vol. 6, no. 7, pp. 464–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. F. A. Hellenthal, W. A. Buurman, W. K. Wodzig, and G. W. Schurink, “Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation,” Nature Reviews Cardiology, vol. 6, no. 8, pp. 543–552, 2009. View at Publisher · View at Google Scholar · View at Scopus