Table of Contents Author Guidelines Submit a Manuscript
Interdisciplinary Perspectives on Infectious Diseases
Volume 2009, Article ID 437187, 9 pages
http://dx.doi.org/10.1155/2009/437187
Review Article

Paleopathology of Human Tuberculosis and the Potential Role of Climate

Division of Paleopathology, Institute of Pathology, Academic Hospital Munich-Bogenhausen, Englschalkinger Str. 77, 81925 Munich, Germany

Received 1 June 2008; Revised 30 November 2008; Accepted 27 January 2009

Academic Editor: Bettina Fries

Copyright © 2009 Andreas G. Nerlich and Sandra Lösch. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Pääbo, “Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 6, pp. 1939–1943, 1989. View at Publisher · View at Google Scholar
  2. A. Cockburn, The Evolution and Eradicaton of Infectious Disease, Johns Hopkins Press, Baltimore, Md, USA, 1963.
  3. R. Brosch, S. V. Gordon, M. Marmiesse et al., “A new evolutionary scenario for the Mycobacterium tuberculosis complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3684–3689, 2002. View at Publisher · View at Google Scholar
  4. C. J. Haas, A. Zink, E. Molar et al., “Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary,” American Journal of Physical Anthropology, vol. 113, no. 3, pp. 293–304, 2000. View at Publisher · View at Google Scholar
  5. A. Zink, C. J. Haas, U. Reischl, U. Szeimies, and A. G. Nerlich, “Molecular analysis of skeletal tuberculosis in an ancient Egyptian population,” Journal of Medical Microbiology, vol. 50, no. 4, pp. 355–366, 2001. View at Google Scholar
  6. V. Formicola, Q. Milanesi, and C. Scarsini, “Evidence of spinal tuberculosis at the beginning of the fourth millennium BC from Arene Candide cave (Liguria, Italy),” American Journal of Physical Anthropology, vol. 72, no. 1, pp. 1–6, 1987. View at Publisher · View at Google Scholar
  7. P. Sager, M. Schalimtzer, and V. Moller-Christensen, “A case of spondylitis tuberculosa in the Danish Neolithic Age,” Danish Medical Bulletin, vol. 19, no. 5, pp. 176–180, 1972. View at Google Scholar
  8. P. Bartels, “Tuberkulose (Wirbelkaries) in der jungen Steinzeit,” Archiv für Anthropologie, vol. 6, pp. 243–255, 1907. View at Google Scholar
  9. I. Hershkovitz, H. D. Donoghue, D. E. Minnikin et al., “Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean,” PLoS ONE, vol. 3, no. 10, article e3426, pp. 1–6, 2008. View at Publisher · View at Google Scholar
  10. W. L. Salo, A. C. Aufderheide, J. Buikstra, and T. A. Holcomb, “Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 6, pp. 2091–2094, 1994. View at Publisher · View at Google Scholar
  11. B. T. Arriaza, W. Salo, A. C. Aufderheide, and T. A. Holcomb, “Pre-Columbian tuberculosis in Northern Chile: molecular and skeletal evidence,” American Journal of Physical Anthropology, vol. 98, no. 1, pp. 37–45, 1995. View at Publisher · View at Google Scholar
  12. B. Arriaza, L. L. Cartmell, C. Moragas, A. G. Nerlich, and A. C. Aufderheide, “The bioarchaeological value of human mummies without provenience,” Chungara, vol. 40, pp. 55–65, 2008. View at Google Scholar
  13. N. Konomi, E. Lebwohl, K. Mowbray, I. Tattersall, and D. Zhang, “Detection of mycobacterial DNA in Andean mummies,” Journal of Clinical Microbiology, vol. 40, no. 12, pp. 4738–4740, 2002. View at Publisher · View at Google Scholar
  14. A. G. Nerlich, C. J. Haas, A. Zink, U. Szeimies, and H. G. Hagedorn, “Molecular evidence for tuberculosis in an ancient Egyptian mummy,” The Lancet, vol. 350, no. 9088, p. 1404, 1997. View at Publisher · View at Google Scholar
  15. A. R. Zink, W. Grabner, U. Reischl, H. Wolf, and A. G. Nerlich, “Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt,” Epidemiology and Infection, vol. 130, no. 2, pp. 239–249, 2003. View at Publisher · View at Google Scholar
  16. A. R. Zink, C. Sola, U. Reischl et al., “Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping,” Journal of Clinical Microbiology, vol. 41, no. 1, pp. 359–367, 2003. View at Publisher · View at Google Scholar
  17. A. R. Zink, W. Grabner, and A. G. Nerlich, “Molecular identification of human tuberculosis in recent and historic bone tissue samples: the role of molecular techniques for the study of historic tuberculosis,” American Journal of Physical Anthropology, vol. 126, no. 1, pp. 32–47, 2005. View at Publisher · View at Google Scholar
  18. A. R. Zink, E. Molnár, N. Motamedi, G. Pálfy, A. Marcsik, and A. G. Nerlich, “Molecular history of tuberculosis from ancient mummies and skeletons,” International Journal of Osteoarchaeology, vol. 17, no. 4, pp. 380–391, 2007. View at Publisher · View at Google Scholar
  19. B. M. Rothschild, L. D. Martin, G. Lev et al., “Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present,” Clinical Infectious Diseases, vol. 33, no. 3, pp. 305–311, 2001. View at Publisher · View at Google Scholar
  20. G. E. Smith and M. A. Ruffer, “Pottsche Krankheit an einer Ägyptischen Mumie aus der Zeit der 21. Dynastie (um 1000 v.Chr.),” in Zur historischen Biologie der Krankheitserreger (Sudhoff's Archiv), Sudhoff and Stricker, Eds., vol. 3, Alfred Töpelmann, Giessen, Germany, 1910. View at Google Scholar
  21. D. Morse, “Tuberculosis,” in Disease in Antiquity, D. Brothwell and A. T. Sandison, Eds., pp. 249–271, Charles C Thomas, Springfield, Ill, USA, 1967. View at Google Scholar
  22. M. Maczel, Y. Ardagna, P. Aycard et al., “Traces of skeletal infections in a French medieval osteoarchaeological sample (La Celle, Var),” in Proceedings of the 13th European Meeting of the Paleopathology Association, M. la Verghetta and L. Capasso, Eds., pp. 167–178, Edigrafital, Teramo, Italy, 2001. View at Google Scholar
  23. E. Molnar, M. Maczel, A. Marcsik, G. Palfi, A. G. Nerlich, and A. Zink, “Molecular biological investigation of skeletal tuberculosis in a medieval cemetery of Hungary,” Folia Anthropologica, vol. 3, pp. 41–51, 2005. View at Google Scholar
  24. S. Lösch, M. Graw, A. G. Nerlich, A. Zink, and O. Peschel, “The Wolfenstein mummies—first report on the paleopathological and forensic investigations on mummified corpses from a South German crypt,” in Mummies and Science, P. Atoche Pena, C. Rodriguez-Martin, and A. Ramirez Rodriguez, Eds., pp. 311–317, World Mummy Research. Academia Canaria de Historia, Sta. Cruz de Tenerife, Spain, 2008. View at Google Scholar
  25. J. R. McTammany, K. M. Moser, and V. N. Houk, “Disseminated bone tuberculosis. Review of the literature and presentation of an unusual case,” The American Review of Respiratory Disease, vol. 87, pp. 889–895, 1963. View at Google Scholar
  26. M. Spigelman and E. Lemma, “The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons,” International Journal of Osteoarchaeology, vol. 3, no. 2, pp. 137–143, 1993. View at Publisher · View at Google Scholar
  27. G. M. Taylor, M. Crossey, J. Saldanha, and T. Waldron, “DNA from Mycobacterium tuberculosis identified in mediaeval human skeletal remains using polymerase chain reaction,” Journal of Archaeological Science, vol. 23, no. 5, pp. 789–798, 1996. View at Publisher · View at Google Scholar
  28. S. Mays, G. M. Taylor, A. J. Legge, D. B. Young, and G. Turner-Walker, “Paleopathological and biomolecular study of tuberculosis in a medieval skeletal collection from England,” American Journal of Physical Anthropology, vol. 114, no. 4, pp. 298–311, 2001. View at Publisher · View at Google Scholar
  29. M. Faerman, R. Jankauskas, A. Gorski, H. Bercovier, and C. L. Greenblatt, “Prevalence of human tuberculosis in a Medieval population of Lithuania studied by ancient DNA analysis,” Ancient Biomolecules, vol. 1, pp. 205–214, 1997. View at Google Scholar
  30. H. A. Fletcher, H. D. Donoghue, J. Holton, I. Pap, and M. Spigelman, “Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians,” American Journal of Physical Anthropology, vol. 120, no. 2, pp. 144–152, 2003. View at Publisher · View at Google Scholar
  31. M. Spigelman, C. L. Greenblatt, K. Vernon et al., “Preliminary findings on the Paleomicrobiological study of 400 naturally mummified human remains from Upper Nubia,” Journal of Biological Reaserch, vol. 80, pp. 91–95, 2005. View at Google Scholar
  32. H. A. Fletcher, H. D. Donoghue, G. M. Taylor, A. G. M. van der Zanden, and M. Spigelman, “Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians,” Microbiology, vol. 149, no. 1, pp. 143–151, 2003. View at Publisher · View at Google Scholar
  33. G. M. Taylor, E. Murphy, R. Hopkins, P. Rutland, and Y. Chistov, “First report of Mycobacterium bovis DNA in human remains from the Iron Age,” Microbiology, vol. 153, no. 4, pp. 1243–1249, 2007. View at Publisher · View at Google Scholar
  34. G. M. Taylor, M. Goyal, A. J. Legge, R. J. Shaw, and D. Young, “Genotypic analysis of Mycobacterium tuberculosis from medieval human remains,” Microbiology, vol. 145, no. 4, pp. 899–904, 1999. View at Google Scholar
  35. F. A. Hassan, “Historical nile floods and their implications for climatic change,” Science, vol. 212, no. 4499, pp. 1142–1145, 1981. View at Publisher · View at Google Scholar
  36. H. Riehl and J. Meitín, “Discharge of the Nile River: a barometer of short-period climate variation,” Science, vol. 206, no. 4423, pp. 1178–1179, 1979. View at Publisher · View at Google Scholar
  37. M. A. J. Williams and F. M. Williams, “Evolution of the Nile basin,” in The Sahara and the Nile, M. A. J. Williams and H. Faure, Eds., pp. 207–224, Balkema, Rotterdam, The Netherlands, 1980. View at Google Scholar
  38. J. Neumann, “Climatic changes in Europe and the near east in the second millenium BC,” Climatic Change, vol. 23, no. 3, pp. 231–245, 1993. View at Publisher · View at Google Scholar
  39. P. Iacumin, H. Bocherens, A. Mariotti, and A. Longinelli, “An isotopic palaeoenvironmental study of human skeletal remains from the Nile Valley,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 126, no. 1-2, pp. 15–30, 1996. View at Publisher · View at Google Scholar