Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2016, Article ID 8768130, 5 pages
http://dx.doi.org/10.1155/2016/8768130
Research Article

Ultrasound-Assisted Extraction of Total Flavonoids from Corn Silk and Their Antioxidant Activity

1Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
2Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, China

Received 14 September 2015; Accepted 29 December 2015

Academic Editor: Alberto Ritieni

Copyright © 2016 Ling-Li Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q.-L. Hu, L.-J. Zhang, Y.-N. Li, Y.-J. Ding, and F.-L. Li, “Purification and anti-fatigue activity of flavonoids from corn silk,” International Journal of Physical Sciences, vol. 5, no. 4, pp. 321–326, 2010. View at Google Scholar · View at Scopus
  2. S.-C. Ren, Q.-Q. Qiao, and X.-L. Ding, “Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis),” Czech Journal of Food Sciences, vol. 31, no. 2, pp. 148–155, 2013. View at Google Scholar · View at Scopus
  3. K. Hasanudin, P. Hashim, and S. Mustafa, “Corn silk (Stigma maydis) in healthcare: a phytochemical and pharmacological review,” Molecules, vol. 17, no. 8, pp. 9697–9715, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-M. Liu, X.-L. Zhao, Z.-Q. Liu, and J.-P. Xing, “Isolation and extraction of total flavonoids from Epimedium Koreanum Nakai by supercritical fluid extraction,” Chemical Research in Chinese Universities, vol. 20, no. 6, pp. 707–710, 2004. View at Google Scholar · View at Scopus
  5. J. Wang, Y.-M. Zhao, C.-Y. Guo et al., “Ultrasound-assisted extraction of total flavonoids from Inula helenium,” Pharmacognosy Magazine, vol. 8, no. 30, pp. 166–170, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Zhang, C. M. Liu, J. Li, Y. J. Qi, Y. C. Li, and S. N. Li, “Development of ‘ultrasound-assisted dynamic extraction’ and its combination with CCC and CPC for simultaneous extraction and isolation of phytochemicals,” Ultrasonics Sonochemistry, vol. 26, pp. 111–118, 2015. View at Publisher · View at Google Scholar
  7. Y. C. Zhang, C. M. Liu, Y. J. Qi, Y. C. Li, and S. N. Li, “Development of circulating ultrasound-assisted online extraction coupled to CCC and CPC for simultaneous extraction and isolation of phytochemicals: application to Ligusticum chuanxiong Hort,” Industrial Engineering Chemistry Research, vol. 54, no. 11, pp. 3009–3017, 2015. View at Publisher · View at Google Scholar
  8. E. Garcia-Castello, A. Rodriguez-Lopez, L. Mayor, R. Ballesteros, C. Conidi, and A. Cassano, “Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes,” LWT—Food Science and Technology, vol. 64, no. 2, pp. 1114–1122, 2015. View at Publisher · View at Google Scholar
  9. C. Carrera, A. Ruiz-Rodríguez, M. Palma, and C. G. Barroso, “Ultrasound-assisted extraction of amino acids from grapes,” Ultrasonics Sonochemistry, vol. 22, pp. 499–505, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. C. Hai, N. M. Hosakatte, H. M. Sang, Y. C. Yong, L. Eun-Jung, and P. Kee-Yoeup, “Comparison of conventional and ultrasound-assisted methods for extraction of nutraceutical compounds from Dendrobium candidum,” CyTA-Journal of Food, vol. 12, no. 4, pp. 355–359, 2014. View at Publisher · View at Google Scholar
  11. B. Singh, H. K. Sharma, and B. C. Sarkar, “Optimization of extraction of antioxidants from wheat bran (Triticum spp.) using response surface methodology,” Journal of Food Science and Technology, vol. 49, no. 3, pp. 294–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. W. B. Kong, N. Liu, J. Zhang et al., “Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology,” Journal of Food Science and Technology, vol. 51, no. 9, pp. 2006–2013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. Martins, L. Bukman, A. M. M. Vargas et al., “The antioxidant activity of teas measured by the FRAP method adapted to the FIA system: optimising the conditions using the response surface methodology,” Food Chemistry, vol. 138, no. 1, pp. 574–580, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Chanderesh, K. Atul, Z. Robel, A. Anghesom, B. Lwam, and J. K. Jeevan, “FRAP (Ferric reducing ability of plasma) assay and effect of Diplazium esculentum (Retz) Sw. (a green vegetable of North India) on central nervous system,” International Journal of Photoenergy, vol. 3, pp. 228–231, 2012. View at Google Scholar