Table of Contents Author Guidelines Submit a Manuscript
Journal of Chemistry
Volume 2018 (2018), Article ID 9649062, 6 pages
Research Article

Homogenate Extraction of Crocins from Saffron Optimized by Response Surface Methodology

1College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
2Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-133, Tehran, Iran

Correspondence should be addressed to Ping Wang

Received 29 August 2017; Accepted 12 October 2017; Published 18 January 2018

Academic Editor: Mostafa Khajeh

Copyright © 2018 Yingpeng Tong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Saffron, which has many kinds of biological activities, has been widely used in medicine, cosmetics, food, and other fields of health promotion industries. Crocins are the main component of saffron (Crocus sativus L.). At present, most of the extraction methods for crocins require long time or special instruments to complete the process and some of them are not suitable for industrial production at present. In this article, homogenate extraction technology which is a convenient and efficient method was developed for crocins extraction from saffron. Firstly, the influences of extraction voltage, extraction time, ethanol concentration, and temperature on crocins yield were studied by single factor experiments; and then response surface methodology (RSM) was used to optimize levels of four variables based on the result of single factor experiments. Results showed that the optimum extraction process conditions for crocins were as follows: extraction voltage, 110 V; ethanol concentration, 70%; extraction temperature, 57°C; and extraction time, 40 s. Based on these conditions, the extraction yield of crocins can reach 22.76% which is higher than ultrasonic extraction method. Therefore, homogenate extraction is an effective way to extract crocins from saffron with higher extraction yield and shorter extraction time.

1. Introduction

Saffron, which is the red stigma of Crocus sativus L., is widely cultivated in Iran, India, Pakistan, Greece, Italy, China, Japan, Azerbaijan, and so on [1]. It is considered to be one of the world’s most expensive spices. The main components in saffron are carotenoids like crocins and crocetin, monoterpene aldehydes like picrocrocin and safranal, and flavonoids. Crocin, which is responsible for the color of saffron, is the most abundant compound in saffron [2]. It has been known that saffron is useful to cure various illnesses, for example, neuronal diseases like depressive disorder [3]; it is also useful for preventing diabetes complication [4], metabolic syndrome [5], and cancer [6] in both clinical trials and animal model studies. It also has various biological activities extensively reviewed by Bathaie’s [7] and Hosseinzadeh’s research groups [8]. It is also safe and nontoxic in both human and animal studies [7, 9].

To our knowledge, extraction methods for crocins in addition to the chromatographic techniques [10] are including ultrasonic-assisted extraction [1113], molecularly imprinted polymer solid-phase extraction [14], high-voltage pulsed electric field-assisted extraction [15], solid-liquid dynamic extraction [13], and supercritical fluid extraction [16]. These procedures give good extraction yields, but most of them require long time or special instruments to complete the process and some of them are not suitable for industrial production at present. Because of the instability of crocins in solution and in the light, the new extraction technology used in crocins extraction from saffron needs to shorten the extraction time and procedure. Meanwhile the homogenate extraction method can just meet the above requirements. Under the action of high-speed shear machine and cutting fluid, it can extract chemical compounds from material in solvent within a very short time without heating and pressure. Moreover, the process of homogenate extraction is carried out in stainless steel tanks; it can also effectively reduce the impact of light on crocins. It has been used to extract camptothecin and hydroxycamptothecin from Camptotheca acuminata leaves [17] and isoflavones from soybean meal [18], which has been proved to be an effective extraction method. However, as far as we know, there was no report about its application on crocins extraction from saffron. In this study, it was applied to extract crocins from saffron and optimized by response surface method for the first time.

2. Results

2.1. Linear Relationship of Calibration Curve

Linear Relationship of Calibration Curve Regression Equation of crocin-1 was obtained by regression analysis of absorbance value of crocin-1 solution (-axis) against concentration (-axis, μg/ml). Linear equation ( = 0.0665 + 0.0108) had excellent correlation coefficient, = 0.9995 ().

2.2. Singer Factor Experiment
2.2.1. Effect of Extraction Voltage on Crocins Yield

As shown in Figure 1(a), the crocins yield increased with extraction voltage from 90 to 110 V and reached (%) at 110 V. After this point, it slightly reduced with voltage increasing. Therefore, 100–120 V was selected as the extraction voltage in the Box-Behnken design process.

Figure 1: The effect of extraction voltage (a), extraction time (b), extraction temperature (c), and ethanol concentration (d) on the yields of crocins from saffron ().
2.2.2. Effect of Extraction Time on Crocins Yield

Figure 1(b) showed that the crocins yield reached (%) at 30 s. From 10 to 20 s and 30 to 40 s, the crocins yield decreased with extraction time increasing while it increased with extraction time increasing from 20 to 30 s. So in the Box-Behnken design process extraction time was set from 20 to 40 s.

2.2.3. Effect of Extraction Temperature on Crocins Yield

As shown in Figure 1(c), the crocins yield increased slowly with extraction temperature from 0 to 60°C to reach (%) at 60°C; then it was relatively stable with slight decrease when temperature increased from 60 to 80°C. Therefore, 40–80°C was selected as the extraction temperature in the Box-Behnken design test.

2.2.4. Effect of Ethanol Concentration on Crocins Yield

According to Figure 1(d), the crocins yield increased with ethanol concentration from 0 to 50% and reached (%) at 50%. Then, it was also relatively stable with slight decrease when ethanol concentration increased to 75%. But the crocins yield sharply decreased to (%) when the ethanol concentration increased from 75 to 100%. Thus, ethanol concentration was suitable to set at 25–75% in the Box-Behnken design process.

2.3. Response Surface Optimization of Homogenate Extraction Conditions

Design-Expert 8.0.6 Trial software was used to analyze the experimental data of response surface and the quadratic polynomial equation was presented in

According to the ANOVA results (Table 1), the values of , , , , , and were smaller than 0.05, indicating they had a significant influence on the yield of crocins from saffron. The and Adj values of (1) were 0.9519 and 0.9038, respectively, which meant the predicted values of (1) had great correlation with real experimental values between the chosen variables including extraction voltage, extraction time, ethanol concentration, and extraction temperature. The correlation between predicted values and real experimental values was showed in Figure 2. As a result of lack of fit test, the fitness of the model was good, because the value of lack of fit was 0.4149, which was greater than 0.05.

Table 1: Results of the variance analysis of regression model.
Figure 2: The correlation between predicted values obtained by the quadratic polynomial equations and actual experimental values.

The 3D response surface plots were made by Design-Expert software in order to get a better visualization between the relations of extraction variables and crocins yields (Figure 3). Among the plots, the interaction of extraction voltage and extraction temperature had significant effects on crocins yield at a fixed time and ethanol concentration and the highest extract yield was achieved when the voltage and temperature were set nearly 110 V and 50°C, respectively. From other plots, the yield variations of crocins can also be seen, but they were not statistically significant.

Figure 3: Response surface plot showing the effect of extraction voltage and extraction temperature on the yield of crocins from saffron.

The optimal values of extraction voltage, extraction time, ethanol concentration, and extraction temperature were also calculated by Design-Expert software, which were 111.2 V, 40 s, 70%, and 50°C, respectively. Under the above conditions, the maximum predicted yield of crocins was 22.84%.

In order to compare the predicted value with the actual result, an experiment was performed for three times and the extraction parameters were set at 111 V, 40 s, 70%, and 50°C for operational convenience. The mean value of these three experiments was 22.76%, which was slightly lower than the one predicted by equation. This result demonstrated that the optimized model adequately reflected the actual extraction process of crocins.

2.4. Comparison of Different Extraction Methods

Homogenate extraction was compared with ultrasonic extraction for crocins from saffron. The ultrasonic extraction process was also optimized by RSM, and the optimal parameters of ultrasonic extraction were 41%, 40°C, and 29 min for ethanol concentration, extraction temperature, and extraction time, respectively. Under this condition, the extraction yield of crocins for ultrasonic extraction was 18.51%, which was 22.96% lower than that in homogenate extraction. In addition to the higher extraction yield of crocins, the extraction time of homogenate extraction was also significantly shorter than ultrasonic extraction. Hence, it was worth noticing that homogenate extraction was a good alternative to extract crocins from saffron.

3. Materials and Methods

3.1. Materials and Reagents

Saffron, which was authenticated by Professor Ping Wang, was purchased from Jiande Sandu farm, Hangzhou, Zhejiang Province of China. Crocin-1 was isolated from saffron in our laboratory. Other reagents were all of analytical grade.

3.2. Apparatus

Homogenate extraction was carried out on JHBE-50A homogenate extractor (Golden Star Technology, Inc., Ltd., Zhengzhou, China). UV-Vis spectrophotometer (756 PC) was purchased from Shanghai Spectrum Instruments Co., Ltd. (Shanghai, China).

3.3. Total Crocins Determination

The total crocins content was determined using a standard curve with crocin-1. Firstly, the stock solution of standard crocin-1 (1.03 mg/ml) was prepared with ultrapure water, and a serial dilution of 2.57 μg/ml up to 10.27 μg/ml was prepared. Subsequently, all standard solutions were determined by UV-Vis spectroscopy within the 440 nm. By plotting absorbance value of each standard solution (-axis) against concentration (-axis, mg/ml), a regression equation was established. The crocins content in extraction solution was measured in triplicate and using the standard curve; after that, the extraction yield of crocins was obtained using

3.4. Homogenate Extraction Process

Under the designed extraction voltage, extraction time, extraction temperature, and ethanol concentration, saffron powder (0.1 g) mixed with ethanol (100 ml) was extracted by homogenate extractor; then the sample was centrifuged at 4700 rpm for 10 min. After that, the supernatant was filtered and collected to determine the content of crocins by UV-Vis spectrophotometer at 440 nm. The whole extraction process was carried out in triplicate.

3.5. Experimental Design

According to the results of single factor experiments, response surface methodology based on Box-Behnken design (BBD) was applied to identify the best extraction conditions for crocins by using four variables, the extraction voltage (1), extraction time (2), ethanol concentration (3), and extraction temperature (4), respectively. And the average of crocins yield () was taken as the response of the design experiments. The above variables listed in Table 2 were coded according to the following equation:where is the coded value of a variable, is the real value of a variable, is the actual value of a variable at the center point, and is the step change value.

Table 2: Coded levels of independent variables used in the RSM design.

As showed in Table 3, a total of 29 experimental runs for BBD were carried out. The independent variables and the crocins yield were correlated by the following quadratic polynomial model: where is the predicted response; , , , and are the coefficients for constant, linear, squared, and interaction terms, respectively.

Table 3: Experimental design and responses of the dependent variables to the extract parameters.

4. Conclusions

In this article, we use crocin-1 as a standard substance to determine the content of crocins and decide which extraction process is better, because all the crocins such as trans-4-GG (crocin-1), trans-3-Gg (crocin-2), trans-2-gg, and crocetin have similar UV absorption wavelength. The test results of crocins in extraction solution were not interfered by safranal, picrocrocin, and flavonoids, because these compounds have no absorption at 440 nm except for crocins

In this study, an efficient homogenate extraction method was successfully applied to extract crocins from saffron. RSM was used to optimize the extraction conditions with high extraction yield. The optimum conditions were 111 V, 40 s, 70%, and 50°C for extraction voltage, extraction time, ethanol concentration, and extraction temperature, respectively. Under these conditions, extraction yield of crocins was much higher than ultrasonic extraction method, in a significantly shorter extraction time. All these data showed that homogenate extraction method was a more efficient procedure for extracting crocins from saffron.

Conflicts of Interest

The authors declare no conflicts of interest.


The authors are grateful to China Postdoctoral Science Foundation (no. 2016M592016) and Key Project of Science and Technology Department of Zhejiang Province (no. 2015C02032) for financial help.


  1. A. Ramadan, G. Soliman, SS. Mahmoud, SM. Nofal, and RF. Abdel-Rahman, “Evaluation of the safety and antioxidant activities of Crocus sativus, and Propolis, ethanolic extracts,” Journal of Saudi Chemical Society, vol. 16, pp. 13–21, 2012. View at Google Scholar
  2. M. Kabiri, H. Rezadoost, and A. Ghassempour, “A comparative quality study of saffron constituents through HPLC and HPTLC methods followed by isolation of crocins and picrocrocin,” LWT- Food Science and Technology, vol. 84, pp. 1–9, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Talaei, M. Hassanpour Moghadam, S. A. Sajadi Tabassi, and S. A. Mohajeri, “Crocin, the main active saffron constituent, as an adjunctive treatment in major depressive disorder: A randomized, double-blind, placebo-controlled, pilot clinical trial,” Journal of Affective Disorders, vol. 174, pp. 51–56, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Altinoz, Z. Oner, H. Elbe, Y. Cigremis, and Y. Turkoz, “Protective effects of saffron (its active constituent, crocin) on nephropathy in streptozotocin-induced diabetic rats,” Human & Experimental Toxicology, vol. 34, no. 2, pp. 127–134, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Nikbakht-Jam, M. Khademi, M. Nosrati et al., “Effect of crocin extracted from saffron on pro-oxidant–anti-oxidant balance in subjects with metabolic syndrome: A randomized, placebo-controlled clinical trial,” European Journal of Integrative Medicine, vol. 8, no. 3, pp. 307–312, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Escribano, G.-L. Alonso, M. Coca-Prados, and J.-A. Fernández, “Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro,” Cancer Letters, vol. 100, no. 1-2, pp. 23–30, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Z. Bathaie, S. Mousavi, and Z., “New Applications of saffron and molecular mechanism of its constituents action,” Critical Reviews in Food Science and Nutrition, vol. 50, pp. 761–786, 2010. View at Google Scholar
  8. S. H. Alavizadeh and H. Hosseinzadeh, “Bioactivity assessment and toxicity of crocin: a comprehensive review,” Food and Chemical Toxicology, vol. 64, pp. 65–80, 2014. View at Publisher · View at Google Scholar
  9. M.-H. Modaghegh, M. Shahabian, H.-A. Esmaeili, O. Rajbai, and H. Hosseinzadeh, “Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers,” Phytomedicine, vol. 15, no. 12, pp. 1032–1037, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Zhang, Y. Zeng, F. Yan et al., “Semi-preparative isolation of crocins from saffron (Crocus sativus L.),” Chromatographia, vol. 59, no. 11-12, pp. 691–696, 2004. View at Google Scholar · View at Scopus
  11. R. Kadkhodaee and A. Hemmati-Kakhki, “Ultrasonic extraction of active compounds from saffron,” Acta Horticulturae, vol. 739, pp. 417–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Kyriakoudi, A. Chrysanthou, F. Mantzouridou, and M. Z. Tsimidou, “Revisiting extraction of bioactive apocarotenoids from Crocus sativus L. dry stigmas (saffron),” Analytica Chimica Acta, vol. 755, pp. 77–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Ferrara, D. Naviglio, and M. Gallo, “Extraction of Bioactive Compounds of Saffron (Crocus sativus L.) by Ultrasound Assisted Extraction (UAE) and by Rapid Solid-Liquid Dynamic Extraction (RSLDE),” European Scientific Journal, vol. 10, pp. 1–13, 2014. View at Google Scholar
  14. S. A. Mohajeri, H. Hosseinzadeh, F. Keyhanfar, and J. Aghamohammadian, “Extraction of crocin from saffron (Crocus sativus) using molecularly imprinted polymer solid-phase extraction,” Journal of Separation Science, vol. 33, no. 15, pp. 2302–2309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Pourzaki, H. Mirzaee, and A. Hemmati Kakhki, “Using pulsed electric field for improvement of components extraction of saffron (Crocus sativus) stigma and its pomace,” Journal of Food Processing and Preservation, vol. 37, no. 5, pp. 1008–1013, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Goleroudbary and S. M. Ghoreishi, “Response surface optimization of Safranal and Crocin extraction from Crocus sativus L. via supercritical fluid technology,” The Journal of Supercritical Fluids, vol. 108, pp. 136–144, 2016. View at Publisher · View at Google Scholar · View at Scopus
  17. W.-G. Shi, Y.-G. Zu, C.-J. Zhao, and L. Yang, “Homogenate extraction technology of camptothecine and hydroxycamptothecin from camptotheca acuminata leaves,” Journal of Forestry Research, vol. 20, no. 2, pp. 168–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Y. Zhu, H. M. Lin, J. Xie, S. S. Chen, and P. Wang, “Homogenate extraction of isoflavones from soybean meal by orthogonal design,” Journal of Scientific and Industrial Research, vol. 70, pp. 455–460, 2011. View at Google Scholar