Journal of Chemistry

Journal of Chemistry / 2019 / Article

Research Article | Open Access

Volume 2019 |Article ID 5734257 | 26 pages | https://doi.org/10.1155/2019/5734257

In Vitro Antileishmanial Activity and GC-MS Analysis of Whole Plant Hexane Fraction of Achillea wilhelmsii (WHFAW)

Academic Editor: Gabriel Navarrete-Vazquez
Received05 Jul 2019
Accepted06 Aug 2019
Published01 Oct 2019

Abstract

In this study, GC-MS analysis has shown that whole plant hexane fraction of Achillea wilhelmsii (WHFAW) consists of 66 compounds which exhibited antileishmanial activity. Antileishmanial bioassay was the method used for determining antileishmanial activity. The inhibitory concentration (IC50) which was observed for whole plant hexane fraction of Achillea wilhelmsii (WHFAW) against parasitic and vector-borne disease, leishmaniasis, is 58.27 ± 0.52 μg/mL. For leishmanicidal assay, Leishmania major is the species used for analysis. Whole plant methanol extract of Achillea wilhelmsii (WMEAW) and whole plant aqueous fraction of Achillea wilhelmsii (WAFAW) exhibited no antileishmanial activity.

1. Introduction

The genus Achillea consists of more than 100 species and belongs to the family Asteraceae, innate to Western Asia and Europe [1]. Achillea means Achilles which in Greek language refers to hero who with the usage of yarrow treated the wounds of soldiers during battles [2]. High mountains of the Mediterranean are the location for the occurrence of Achillea species [3]. The extracts and fractions of Achillea exhibited analgesic, antiulcerogenic, anti-inflammatory, antipyretic, antioxidant, cytotoxic, antibacterial, hypoglycemic, and immunosuppressive properties [412]. Achillea wilhelmsii exhibited antimycobacterial, antihypertensive abdominal pain, flatulence, and antihyperlipidemic properties [1315]. Chemically, Achillea wilhelmsii consist of sesquiterpenoids, cineol, flavonoids, borneol, alkaloids, thujene, carvacrol, caryophyllene, monoterpenoids, camphor, rutin, pinene, and linalool [16, 17]. The parasitic and vector-borne disease, leishmaniasis, is caused by 21 out of 30 species of Leishmania, and in the entire world, this is the 6th infectious disease predominantly in tropical and subtropical countries [18]. Leishmaniasis is classified into three forms, for instance, visceral, cutaneous, and mucocutaneous [19, 20]. In this research study, the extract and fractions of Achillea wilhelmsii are examined against leishmaniasis.

2. Materials and Methods

2.1. Plant Material

In this research study, whole plant of Achillea wilhelmsii was used.

2.2. Extraction

The plant Achillea wilhelmsii was collected from Killi Murda Karez Chaman, Balochistan, Pakistan, and identified by Prof. Dr. Rasool Bakhsh Tareen, Department of Botany, University of Balochistan, Quetta, Pakistan. 0.5 kg whole plant of Achillea wilhelmsii was dried in shade and then grinded, soaked in 2 liters of methanol, kept for 7 days, and shaken daily. After 7-day period, methanol containing whole plant of Achillea wilhelmsii was filtered and vaporized with the help of rotary evaporator. Dried semisolid whole plant methanolic extract of Achillea wilhelmsii (WMEAW) was 53.2 g. This crude extract was examined for antileishmanial activity while the remaining extract was fractionated with solvents, for instance, n-hexane and aqueous.

2.3. Fractionation of Crude Extract

In a separatory funnel, with crude extract, two solvents were added such as n-hexane and aqueous. The separatory funnel was shaken thoroughly to create two layers such as n-hexane layer and aqueous layer. Both solvents were separately vaporized with the help of rotary evaporator to form whole plant hexane fraction of Achillea wilhelmsii (WHFAW) 8.1 g and whole plant aqueous fraction of Achillea wilhelmsii (WAFAW) 17.3 g. Both fractions were examined for antileishmanial activity [21, 22].

2.4. Antileishmanial Bioassay

The extracts and fractions of medicinal plants were examined against Leishmania major (promastigotes) in culture by means of microplates. Using normal physiological saline, in bulk, promastigotes of Leishmania major (MHOM/Pk/88/DESTO) were grown in NNN biphasic medium. Then, for the culturing of promastigotes, RPMI 1640 medium (Sigma, St Louis, USA) supplemented with 10% heat-inactivated FBS (PAA Laboratory GmbH, Austria) was used. At log phase, the promastigotes were harvested, and then for 10 min at 2000 rpm, the leishmanial parasites were centrifuged. At same speed and time, the Leishmania major was washed three times with saline. Lastly, under microscope, by using Neubauer chamber, the promastigotes were counted and diluted with the addition of fresh culture medium to develop the leishmanial parasites with a final density of 106 cells/mL.

In a 96-well microtitre plate, culture medium with 180 μL was added in different wells. PBS with pH 7.4 having 0.5% DMSO and 0.5% MeOH was used for the dissolution of extracts and fractions of medicinal plants to make 1000 mg/mL stock solution. The extracts and fractions with concentration of 20 μL were introduced in wells, and this was further serially diluted to develop working solution with 1–100 μg/mL range. The parasite culture with 100 μL was introduced in all wells. During this protocol, two rows were left; one row was for negative control which received medium while the other for positive control that received the standard antileishmanial drugs such as amphotericin B (Fluka) and pentamidine (ICN). The 96-well microtitre plate was incubated for 72 h between 21 and –22°C. With the help of microscope, the culture was observed for cell viability; for instance, the number of motile cells was counted on an improved Neubauer counting chamber, and with the help of software Ezfit 5.03 (Perella Scientific, USA), the IC50 values of extracts and fractions with antileishmanial activities were calculated [23].

2.5. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis Triple Quadrupole Acquisition Method MS Parameters

For identification and quantification of Achillea wilhelmsii compounds: 2 μL of Achillea wilhelmsii extract or fraction was directly injected into the gas chromatograph mod. 6890N Network GC System (Agilent Technologies, Palo Alto, CA) together in the presence of mass spectrometer mod. 5973 Network Mass Selective Detector (Agilent Technologies, Palo Alto, CA) and furnished in the presence of a column HP-5MS (30 m length, 0.25 mm interior diameter, 0.25 μm film width; Agilent Technologies, Palo Alto, CA). Helium gas was off. Injection was made into a split-splitless injector (split ratio of 30 : 1) at 250°C. The oven program was the following: 70°C for 3 min then 6°C/min to 180 for 5 min, then 6°C/min to 280°C for 10 min, and then 8°C/min to 290°C for 20 min. The MSD transfer line was set at a temperature of 250°C; MSD temperature quadrupole was of 150°C and ionization temperature was 230°C. Mass spectra were seventy electrovolts, and scan achievement was accomplished in the series between 35 and 300 m/z. The identification of the components of the Achillea wilhelmsii extract or fraction was assigned by matching their mass spectra with those available in the libraries NIST 02 and WILEY [24].

3. Results and Discussion

Antileishmanial results have shown that whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) exhibited antileishmanial activity. The inhibitory concentration (IC50) which is observed for whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) against parasitic and vector-borne disease, leishmaniasis, is 58.27 ± 0.52 μg/mL. For leishmanicidal assay, Leishmania major is the species used for analysis. In this bioassay, amphotericin B (IC50: 0.29 ± 0.05 μg/mL) and pentamidine (IC50: 5.09 ± 0.09 μg/mL) were used as positive control drugs to compare the parasite inhibition with that whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW). This activity was perceived under an incubation period of 72 h and an incubation temperature of 22°C. Whole plant methanolic extract of Achillea wilhelmsii (WMEAW) and whole plant aqueous fraction of Achillea wilhelmsii (WAFAW) exhibited no antileishmanial activity. The antileishmanial activities of extract and fractions of Achillea wilhelmsii are shown in Table 1.


S. noName of extracts/fractions/standard drugsIC50 (μg/mL) ± S.D.

1WMEAW>100
2WHFAW58.27 ± 0.52 moderate activity
3WAFAW>100
4Amphotericin B0.20 ± 0.5
5Pentamidine5.09 ± 0.9

Molecular formula, molecular mass, structure, and RT of compounds 1–66 of whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) are shown in Tables 214 while mass spectra interpretation of compounds 1–66 of whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) are presented in Tables 1527. Mass spectra of compounds 1–66 are shown in Figures 166.


CompoundNameMolecular formulaMolecular massStructureRT

1EucalyptolC10H18O1547.606

22(3H)-Furanone, 5-ethenyldihydro-5-methyl-C7H10O21267.833

3Terpineol, cis-β-C10H18O1548.528

42-Furanmethanol, 5-ethenyltetrahydro-α,α,5-trimethyl-, cis-C10H18O21708.660

51,6-Octadien-3-ol, 3,7-dimethyl-C10H18O1549.363


CompoundNameMolecular formulaMolecular massStructureRT

6Butanoic acid, 2-methyl-, 2-methylbutyl esterC10H20O21729.458

7n-Amyl isovalerateC10H20O21729.568

82,2,6-Trimethyl-bicyclo[4.1.0]hept-1-yl-methanolC11H20O1689.905

9IsopinocarveolC10H16O15210.476

10Bicyclo[2.2.1]heptane-2,5-diol, 1,7,7-trimethyl-, (2-endo,5-exo)-C10H18O217010.622


CompoundNameMolecular formulaMolecular massStructureRT

113,6-Dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuranC10H16O15210.930

122(10)-Pinen-3-oneC10H14O15011.113

13Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, (1S-endo)-C10H18O15411.215

143-Cyclohexen-1-ol, 4-methyl-1-(1-methylethyl)-C10H18O15411.508

153,7-Octadiene-2,6-diol, 2,6-dimethyl-C10H18O217011.801


CompoundNameMolecular formulaMolecular massStructureRT

163-Cyclohexene-1-methanol, α,α4-trimethyl-C10H18O17011.867

171,7-Octadiene-3,6-diol, 2,6-dimethylC10H18O217014.071

18ThymolC10H14O15014.620

19Phenol, 2-methoxy-3-(2-propenyl)-C10H12O216416.319

207-Hexadecene, (Z)-C16H3222417.124


CompoundNameMolecular formulaMolecular massStructureRT

21CaryophylleneC15H2420417.959

221,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)-C15H26O22221.385

231H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1aα,4aα,7β,7aβ,7bα)]-C15H24O22021.803

24Caryophyllene oxideC15H24O22021.942

25Tetracyclo[6.3.2.0(2,5).0(1,8)]tridecan-9-ol, 4,4-dimethyl-C15H24O22023.070


CompoundNameMolecular formulaMolecular massStructureRT

26Oxacyclotetradecan-2-one, 14-methylC14H26O222623.465

27Caryophyllene oxideC15H24O22023.890

289-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-olC15H26O223825.493

29Tetradecanoic acidC14H28O222825.793

301,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, [S-(Z)]-C15H26O22227.184


CompoundNameMolecular formulaMolecular massStructureRT

313,7,11,15-Tetramethyl-2-hexadecen-1-olC20H40O29627.814

32cis-9-Hexadecenoic acidC16H30O225428.305

332,6,10-Dodecatrien-1-ol, 12-acetoxy-2,6,10-trimethyl-(E,E,E)-C17H28O328031.570

34n-Hexadecanoic acidC16H32O225632.486

35Cholestan-3-ol, 2-methylene-, (3β,5α)-C28H48O40034.463


CompoundNameMolecular formulaMolecular massStructureRT

369-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-olC15H26O223836.806

37trans-Z-α-Bisabolene epoxideC15H24O22038.475

381-HexadecanolC16H34O24239.127

399,12-Octadecadienoic acid, methyl ester, (E,E)-C19H34O229439.903

409,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)-C19H32O229240.349


CompoundNameMolecular formulaMolecular massStructureRT

41PhytolC20H40O29641.118

429,12-Octadecadienoic acid (Z,Z)-C18H32O228042.297

439,12,15-Octadecatrienoic acid, (Z,Z,Z)-C18H30O227842.700

44α-SantoninC15H18O324643.293

45Limonen-6-ol, pivalateC15H24O223643.439


CompoundNameMolecular formulaMolecular massStructureRT

46Hexadecanoic acid, 1,1-dimethylethyl esterC20H40O231244.237

471-EicosanolC20H42O29846.851

48Tetradecane, 2,6,10-trimethyl-C17H3624047.137

49Butyl 9,12-octadecadienoateC22H40O233648.228

50Butyl 9,12,15-octadecatrienoateC22H38O233448.360


CompoundNameMolecular formulaMolecular massStructureRT

511-DocoseneC22H4430850.476

52HeptacosaneC27H5638050.607

53Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl esterC19H38O433050.739

541,2-Benzenedicarboxylic acid, diisooctyl esterC24H38O439051.318

559,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl esterC21H38O435453.097


CompoundNameMolecular formulaMolecular massStructureRT

568,11,14-Eicosatrienoic acid, (Z,Z,Z)-C20H34O230653.207

571-Hexadecanol, 2-methyl-C17H36O25655.396

58dl-α-TocopherolC29H50O243057.842

59Pregnan-20-one, 3-(acetyloxy)-5,6 : 16,17-diepoxy-, (3β,5α,6α,16α)-C23H32O538857.937

60CampesterolC28H48O40058.962


CompoundNameMolecular formulaMolecular massStructureRT

61StigmasterolC29H48O41259.357

62β-SitosterolC29H50O41460.126

63QuassinC22H28O638860.338

649,19-Cyclolanost-24-en-3-ol, (3β)-C30H50O42661.195

659,19-Cyclolanost-24-en-3-ol, acetate, (3β)-C32H52O246862.908

66Ethanol, 2-(9-octadecenyloxy)-, (Z)-C20H40O231263.626


Compoundm/z (% relative abundance)

1154(M+), 111(389), 108(482), 93(503), 84(443), 81(727), 71(506), 69(455), 55(403), 43(999), 41(320)
2126(M+), 111(999), 99(255), 98(210), 83(220), 71(410), 67(320), 56(310), 55(620), 43(510), 27(255)
3154(M+), 111(183), 93(316), 81(230), 79(171), 71(534), 69(240), 67(142), 55(335), 43(999), 41(500)
4170(M+), 94(224), 69(201), 68(330), 67(266), 59(999), 55(346), 43(668), 41(523), 39(233), 27(270)
5154(M+), 121(232), 93(760), 80(321), 71(999), 69(426), 67(206), 55(637), 43(598), 41(564), 39(179)


Compoundm/z (% relative abundance)

6172(M+), 103(133), 85(705), 71(224), 70(999), 57(818), 55(227), 43(427), 42(123), 41(348), 29(311)
7172(M+), 85(999), 71(263), 70(884), 57(626), 55(262), 43(589), 42(175), 41(349), 29(234), 27(154)
8168(M+), 95(700), 85(749), 84(849), 83(509), 81(794), 79(577), 69(842), 55(728), 43(550), 41(999)
9152(M+), 92(708), 91(543), 83(624), 79(350), 70(797), 69(561), 55(859), 41(999), 39(396), 27(336)
10170(M+), 108(722), 95(379), 93(669), 49(467), 67(561), 55(627), 43(450), 41(999), 39(596), 27(509)


Compoundm/z (% relative abundance)

11152(M+), 137(999), 109(311), 95(129), 93(155), 79(156), 69(342), 67(131), 55(159), 41(239), 29(118)
12150(M+, 299), 108(759), 107(398), 81(999), 79(335), 69(424), 53(970), 41(673), 39(319), 27(307)
13154(M+), 110(196), 95(999), 93(111), 67(92), 55(150), 43(176), 41(323), 39(198), 29(160), 27(213)
14154(M+), 111(494), 93(505), 86(247), 71(999), 69(226), 67(184), 55(265), 43(544), 41(356), 27(175)
15170(M+), 85(80), 83(82), 82(999), 71(634), 67(365), 55(113), 43(572), 41(144), 39(60), 27(102)


Compoundm/z (% relative abundance)

16170(M+), 136(462), 121(487), 95(125), 93(602), 92(165), 81(331), 67(166), 59(999), 43(314), 41(155)
17170(M+), 82(526), 71(851), 69(172), 68(375), 67(999), 55(410), 43(864), 41(406), 39(176), 27(246)
18150(M+, 248), 136(89), 135(999), 117(87), 115(91), 91(157), 77(80), 51(56), 41(55), 39(94)
19164(M+, 999), 149(415), 137(210), 131(279), 121(245), 104(223), 103(344), 91(280), 77(378), 55(271)
20224(M+), 97(360), 83(517), 70(446), 69(628), 57(572), 56(547), 55(999), 43(664), 41(569), 29(242)


Compoundm/z (% relative abundance)

21204(M+), 133(646), 107(389), 105(372), 93(937), 91(551), 81(389), 79(614), 69(976), 55(432), 41(999)
22222(M+), 107(275), 93(560), 81(241), 79(192), 71(370), 69(999), 67(249), 55(272), 43(410), 41(586)
23220(M+), 205(440),159(365), 119(524), 105(555), 93(449), 91(647), 79(379), 55(343), 43(999), 41(709)
24220(M+), 95(420), 93(661), 91(573), 81(373), 79(885), 69(407), 67(377), 55(393), 43(999), 41(927)
25220(M+), 136(999), 135(148), 105(132), 93(130), 91(260), 79(217), 69(190), 67(163), 55(174), 41(508)


Compoundm/z (% relative abundance)

26226(M+), 98(479), 97(375), 84(327), 83(448), 69(601), 56(376), 55(999), 43(491), 41(908), 29(354)
27220(M+), 95(420), 93(661), 91(573), 81(373), 79(885), 69(407), 67(377), 55(393), 43(999), 41(927)
28238(M+), 93(372), 85(316), 81(999), 71(623), 69(366), 67(292), 55(375), 43(919), 41(727), 29(314)
29228(M+), 185(292), 129(512), 73(999), 71(336), 69(353), 60(904), 57(652), 55(707), 43(721), 41(677)
30222(M+), 107(221), 93(402), 81(207), 71(384), 69(798), 67(242), 55(283), 53(153), 43(669), 41(999)


Compoundm/z (% relative abundance)

31296(M+), 123(892), 95(962), 82(986), 81(999), 71(748), 68(728), 57(811), 55(852), 43(965), 41(811)
32254(M+), 97(376), 96(251), 82(292), 83(461), 69(648), 67(290), 56(305), 55(999), 43(374), 41(587)
33280(M+), 107(176), 95(228), 94(138), 93(341), 81(186), 69(259), 68(314), 67(154), 43(999), 41(213)
34256(M+), 129(435), 83(267), 73(980), 71(373), 69(351), 60(999), 57(840), 55(767), 43(817), 41(574)
35400(M+), 105(344), 97(344), 95(666), 93(390), 83(528), 81(735), 79(413), 71(689), 69(999), 67(632),


Compoundm/z (% relative abundance)

36238(M+), 93(372), 85(316), 81(999), 71(623), 69(366), 67(292), 55(375), 43(919), 41(727), 29(314)
37220(M+), 109(320), 107(263), 93(291), 91(247), 79(234), 67(295), 57(311), 55(431), 43(999), 41(901)
38242(M+), 97(573), 83(760), 82(394), 70(425), 69(822), 57(653), 56(410), 55(999), 43(710), 41(758),
39294(M+), 95(450), 82(450), 81(670), 79(330), 69(350), 68(400), 67(999), 55(720), 54(380), 41(910)
40292(M+), 180(270), 95(400), 93(470), 81(430), 80(420), 79(999), 67(780), 55(570), 43(310), 41(610)


Compoundm/z (% relative abundance)

41296(M+), 123(184), 81(223), 71(999), 69(239), 68(199), 57(334), 56(169), 55(259), 43(381), 41(260)
42280(M+), 96(388), 95(617), 82(516), 81(827), 79(430), 68(437), 67(999), 55(680), 54(429), 41(523)
43278(M+), 108(391), 95(478), 93(503), 91(299), 81(373), 80(460), 79(999), 67(624), 55(463), 41(408)
44246(M+, 667), 173(999), 172(429), 135(559), 91(793), 77(544), 69(491), 55(499), 45(351), 41(461)
45236(M+), 119(175), 109(214), 107(236), 93(398), 91(209), 85(206), 57(999), 55(287), 43(403), 41(493)


Compoundm/z (% relative abundance)

46312(M+), 73(303), 69(191), 61(153), 60(278), 57(622), 56(999), 55(317), 43(526), 41(444), 29(316)
47298(M+), 97(542), 83(620), 82(350), 71(330), 69(617), 57(743), 56(358), 55(893), 43(999), 41(799)
48240(M+), 155(134), 85(500), 84(179), 71(641), 69(147), 57(999), 56(256), 55(282), 43(782), 41(384)
49336(M+), 109(379), 96(439), 95(699), 82(489), 81(949), 79(409), 69(349), 68(389), 67(999), 55(669)
50334(M+), 121(299), 108(469), 95(679), 93(559), 91(309), 81(499), 80(409), 79(999), 67(689), 55(509)


Compoundm/z (% relative abundance)

51308(M+), 97(622), 83(617), 71(406), 70(362), 69(687), 57(902), 56(437), 55(999), 43(967), 41(859)
52380(M+), 99(140), 85(416), 71(622), 69(176), 57(999), 56(139), 55(283), 43(798), 41(275), 29(135)
53330(M+), 239(380), 98(710), 84(480), 74(630), 69(390), 57(850), 55(690), 43(999), 41(740), 29(480)
54390(M+), 167(350), 150(107), 149(999), 83(100), 71(224), 70(264), 57(341), 55(218), 43(200), 41(225)
55354(M+), 262(390), 95(490), 82(370), 81(840), 79(420), 69(390), 67(999), 55(780), 54(380), 41(690)


Compoundm/z (% relative abundance)

56306(M+), 93(470), 91(380), 81(630), 80(750), 79(780), 67(960), 57(400), 55(810), 43(810), 41(999)
57256(M+), 97(386), 83(460), 71(514), 70(341), 69(580), 57(999), 56(572), 55(670), 43(888), 41(633)
58431(M + 1], 84), 430(M+], 261), 205(98), 166(114), 165(999), 164(322), 57(95), 55(77), 43(165), 41(84)
59388(M+), 328(999), 105(500), 95(378), 93(469), 91(730), 81(348), 79(545), 77(505), 55(580), 53(405)
60400(M+), 145(285), 107(403), 105(306), 95(414), 81(436), 71(312), 57(452), 55(617), 43(999), 41(470)


Compoundm/z (% relative abundance)

61412(M+), 159(418), 133(444), 105(427), 95(398), 91(427), 83(692), 81(638), 69(636), 55(999), 43(431)
62414(M+), 107(378), 105(392), 95(387), 91(377), 81(427), 69(348), 57(447), 55(639), 43(999), 41(561)
63388(M+), 302(346), 165(310), 152(642), 127(369), 91(399), 77(298), 69(806), 55(510), 43(999), 41(735)
64426(M+), 135(320), 121(350), 109(440), 107(400), 95(430), 93(370), 81(440), 69(999), 55(549), 41(579)
65468(M+), 121(278), 109(324), 107(311), 95(456), 93(260), 81(316), 69(752), 55(485), 43(999), 41(572)
66312(M+), 96(708), 95(546), 83(670), 82(968), 81(627), 69(770), 67(664), 55(999), 43(577), 41(621)

4. Conclusion

In this research study, whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) exhibited antileishmanial activity and consists of 66 compounds which was analyzed by GC-MS. Whole plant methanol extract of Achillea wilhelmsii (WMEAW) and whole plant aqueous fraction of Achillea wilhelmsii (WAFAW) exhibited no antileishmanial activity. Therefore, the compounds present in the whole plant n-hexane fraction of Achillea wilhelmsii (WHFAW) which has shown antileishmanial activity will be the drugs for the treatment of leishmaniasis with least side effects and toxicity.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors are thankful to Hussain Ebrahim Jamal (HEJ), Research Institute of Chemistry, University of Karachi, Karachi, Pakistan, for providing antileishmanial, GC-MS analysis, and Institute of Biochemistry, University of Balochistan, Quetta, Pakistan, for providing lab facilities for extraction and fractionation.

References

  1. S. Dokhani, T. Cottrell, J. Khajeddin, and G. Mazza, “Analysis of aroma and phenolic components of selected Achillea species,” Plant Foods for Human Nutrition, vol. 60, no. 2, pp. 55–62, 2005. View at: Publisher Site | Google Scholar
  2. S. Saeidnia, A. R. Gohari, N. Mokhber-Dezfuli, and F. Kiuchi, “A review on phytochemistry and medicinal properties of the genus Achillea,” DARU, vol. 19, no. 3, pp. 173–186, 2011. View at: Google Scholar
  3. S. Trifunovic, V. Vajs, Z. Juranic et al., “Cytotoxic constituents of Achillea clavennae from Montenegro,” Phytochemistry, vol. 67, pp. 887–893, 2006. View at: Publisher Site | Google Scholar
  4. R. Rezaeipoor, M. Saeidnia, and M. Kamalinejad, “Immunosuppressive activity of Achillea talagonica on humoral immune responses in experimental animals,” Journal of Ethnopharmacology, vol. 65, no. 3, pp. 273–276, 1999. View at: Publisher Site | Google Scholar
  5. S. Konyalioglu and C. Karamenderes, “The protective effects of Achillea L. species native in Turkey against H2O2-induced oxidative damage in human erythrocytes and leucocytes,” Journal of Ethnopharmacology, vol. 102, no. 2, pp. 221–227, 2005. View at: Publisher Site | Google Scholar
  6. R. Kotan, A. Cakir, F. Dadasoglu et al., “Antibacterial activities of essential oils and extracts of Turkish Achillea, Satureja and Thymus species against plant pathogenic bacteria,” Journal of the Science of Food and Agriculture, vol. 90, no. 1, pp. 145–160, 2009. View at: Publisher Site | Google Scholar
  7. G. Stojanovic, N. Radulovic, T. Hashimoto, and R. Palic, “In vitro antimicrobial activity of extracts of four Achillea species: the composition of Achillea clavennae L. (Asteraceae) extract,” Journal of Ethnopharmacology, vol. 101, no. 1–3, pp. 185–190, 2005. View at: Publisher Site | Google Scholar
  8. R. Yazdanparast, A. Ardestani, and S. Jamshidi, “Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters,” Journal of Ethnopharmacology, vol. 112, no. 1, pp. 13–18, 2007. View at: Publisher Site | Google Scholar
  9. C. Karamenderes and S. Apaydin, “Antispasmodic effect of Achillea nobilis L. subsp. sipylea (O. Schwarz) Bässler on the rat isolated duodenum,” Journal of Ethnopharmacology, vol. 84, no. 2-3, pp. 175–179, 2003. View at: Publisher Site | Google Scholar
  10. F. B. Potrich, A. Allemand, L. M. da Silva et al., “Antiulcerogenic activity of hydroalcoholic extract of Achillea millefolium L.: involvement of the antioxidant system,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 85–92, 2010. View at: Publisher Site | Google Scholar
  11. A. M. Cavalcanti, C. H. Baggio, C. S. Freitas et al., “Safety and antiulcer efficacy studies of Achillea millefolium L. after chronic treatment in Wistar rats,” Journal of Ethnopharmacology, vol. 107, no. 2, pp. 277–284, 2006. View at: Publisher Site | Google Scholar
  12. C. I. G. Tuberoso, P. Montoro, S. Piacente et al., “Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All,” Journal of Pharmaceutical and Biomedical Analysis, vol. 50, no. 3, pp. 440–448, 2009. View at: Publisher Site | Google Scholar
  13. A. Kaliora and G. Dedoussis, “Natural antioxidant compounds in risk factors for CVD,” Pharmacological Research, vol. 56, no. 2, pp. 99–109, 2007. View at: Publisher Site | Google Scholar
  14. F. Tosun, Ç. A. Kızılay, B. Şener, M. Vural, and P. Palittapongarnpim, “Antimycobacterial screening of some Turkish plants,” Journal of Ethnopharmacology, vol. 95, no. 2-3, pp. 273–275, 2004. View at: Publisher Site | Google Scholar
  15. G. Honda, E. Yesilada, M. Tabata et al., “Traditional medicine in Turkey VI. Folk medicine in west Anatolia: Afyon, Kütahya, Denizli, Mugla, Aydin provinces,” Journal of Ethnopharmacology, vol. 53, no. 2, pp. 75–87, 1996. View at: Publisher Site | Google Scholar
  16. S. Niazmand, E. Khooshnood, and M. Derakhshan, “Effect of Achillea wilhelmsii on rats gastric acid output at basal, vagotomized and vagal-stimulated conditions,” Pharmacognosy Magazine, vol. 6, no. 24, pp. 281–285, 2010. View at: Publisher Site | Google Scholar
  17. K. Javidnia, R. Miri, and H. Sadeghpour, “Composition of the volatile oil of Achillea wilhelmsii C. koch from Iran,” DARU, vol. 12, no. 2, pp. 63–66, 2004. View at: Google Scholar
  18. World Health Organization, Leishmaniasis, WHO, Geneva, Switzerland, 2015.
  19. S. Kaur, H. Patel, V. Sharma, P. Garg, and Roy. N, “Leishmania major structural database,” International Journal of Integrative Biology, vol. 7, no. 2, pp. 63–68, 2009. View at: Google Scholar
  20. N. C. Hepburn, “Cutaneous leishmaniasis. clinical dermatology. Review article,” Clinical and Experimental Dermatology, vol. 25, no. 5, pp. 363–370, 2000. View at: Publisher Site | Google Scholar
  21. B. Jehan, K. Shehla, and S. Mohammad, “Antimicrobial potentials of fresh Allium cepa against gram negative bacteria and fungi,” Pakistan Journal of Botany, vol. 45, pp. 1–6, 2013. View at: Google Scholar
  22. J. K. Achakzai, M. A. Panezai, M. A. Kakar et al., “In vitro anticancer MCF-7, anti-inflammatory, and brine shrimp lethality assay (BSLA) and GC-MS analysis of whole plant butanol fraction of Rheum ribes (WBFRR),” BioMed Research International, vol. 2019, Article ID 3264846, 8 pages, 2019. View at: Publisher Site | Google Scholar
  23. R. Atta-ur, M. I. Chaudhary, and W. Thompson, Bioassay Techniques for Drug, vol. 60, Harwood Academic publishers, Amsterdam, The Netherlands, 2001.
  24. E. Ahmed El-Wakil, M. Mohamed El-Sayed, and E. E. Abdel-Lateef, “GC-MS investigation of essential oil and antioxidant activity of Egyptian white onion (Allium cepa L.),” International Journal of Pharmaceutical Sciences and Research IJPSR, vol. 6, no. 3, 2015. View at: Google Scholar

Copyright © 2019 Jahangir Khan Achakzai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

466 Views | 394 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Download other formatsMore
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.