Table of Contents Author Guidelines Submit a Manuscript
Journal of Control Science and Engineering
Volume 2013, Article ID 416715, 13 pages
http://dx.doi.org/10.1155/2013/416715
Research Article

Mobile Robot Path Planning Using Polyclonal-Based Artificial Immune Network

1School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
2Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada B3J 2X4

Received 14 June 2013; Accepted 14 August 2013

Academic Editor: Fei Liu

Copyright © 2013 Lixia Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Ma, Y. Xu, G.-Q. Sun, L.-X. Deng, and Y.-B. Li, “State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots,” Journal of Zhejiang University Science C, vol. 14, no. 3, pp. 167–178, 2013. View at Google Scholar
  2. R. Abiyev, D. Ibrahim, and B. Erin, “Navigation of mobile robots in the presence of obstacles,” Advances in Engineering Software, vol. 41, no. 10-11, pp. 1179–1186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Zhang, D. Chen, and T. Chen, “An obstacle avoidance method of soccer robot based on evolutionary artificial potential field,” Journal of Energy Procedia, vol. 16, pp. 1792–1798, 2012. View at Google Scholar
  4. R. A. F. Romero, E. Prestes, M. A. P. Idiart, and G. Faria, “Locally oriented potential field for controlling multi-robots,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4664–4671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Kareem Jaradat, M. Al-Rousan, and L. Quadan, “Reinforcement based mobile robot navigation in dynamic environment,” Robotics and Computer-Integrated Manufacturing, vol. 27, no. 1, pp. 135–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter, “Real-world reinforcement learning for autonomous humanoid robot docking,” Journal of Robotics and Autonomous Systems, vol. 60, pp. 1400–1407, 2012. View at Google Scholar
  7. O. Motlagh, S. H. Tang, N. Ismail, and A. R. Ramli, “An expert fuzzy cognitive map for reactive navigation of mobile robots,” Journal of Fuzzy Sets and Systems, vol. 201, pp. 105–121, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Ibrahim, D. Hanafi, and R. Ghoni, “Autonomous navigation for a dynamical hexapod robot using fuzzy logic controller,” Journal of Procedia Engineering, vol. 38, pp. 330–341, 2012. View at Google Scholar
  9. O. Castillo, R. Martínez-Marroquín, P. Melin, F. Valdez, and J. Soria, “Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot,” Journal of Information Sciences, vol. 192, pp. 19–38, 2012. View at Google Scholar
  10. A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with improved genetic algorithm,” Journal of Computers and Electrical Engineering, vol. 38, pp. 1564–1572, 2012. View at Google Scholar
  11. M. Aly and A. Abbas, “Simulation of obstacles effect on industrial robots working space using genetic algorithm,” Journal of King Saud University—Engineering Sciences, 2013. View at Publisher · View at Google Scholar
  12. B. Deepak, D. R. Parhi, and S. Kundu, “Innate immune based path planner of an autonomous mobile robot,” Journal of Procedia Engineering, vol. 38, pp. 2663–2671, 2012. View at Google Scholar
  13. X. Chen, G.-Z. Tan, and B. Jiang, “Real-time optimal path planning for mobile robots based on immune genetic algorithm,” Journal of Central South University (Science and Technology), vol. 39, no. 3, pp. 577–583, 2008. View at Google Scholar · View at Scopus
  14. A. Raza and B. R. Fernandez, “Immuno-inspired heterogeneous mobile robotic systems,” in Proceedings of the 49th IEEE Conference on Decision and Control (CDC '10), pp. 7178–7183, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yuan, S.-A. Wang, C. Wu, and N. Chen, “A novel immune network strategy for robot path planning in complicated environments,” Journal of Intelligent & Robotic Systems, vol. 60, no. 1, pp. 111–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G.-C. Luh and W.-W. Liu, “An immunological approach to mobile robot reactive navigation,” Applied Soft Computing Journal, vol. 8, no. 1, pp. 30–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Challoo, P. Rao, S. Ozcelik, L. Challoo, and S. Li, “Navigation control and path mapping of a mobile robot using artificial immune systems,” Journal of Robotics and Automation, vol. 1, no. 1, pp. 1–25, 2010. View at Google Scholar
  18. S. Ozcelik and S. Sukumaran, “Implementation of an artificial immune system on a mobile robot,” Journal of Procedia Computer Science, vol. 6, pp. 317–322, 2011. View at Google Scholar
  19. T. Bonaci, P. Lee, L. Bushnell, and R. Poovendran, “A convex optimization approach for clone detection in wireless sensor networks,” Journal of Pervasive and Mobile Computing, vol. 9, no. 4, pp. 528–545, 2013. View at Google Scholar
  20. L. N. De Castro and F. J. Von Zuben, “Learning and optimization using the clonal selection principle,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 3, pp. 239–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Chen and M. Mahfouf, “A population adaptive based immune algorithm for solving multi-objective optimization problems,” in Proceedings of the International Symposium on Artificial Immune Systems, pp. 280–293, Springer, 2006.
  22. N. C. Cortes and C. A. C. Coello, “Multiobjective optimization using ideas from the clonal selection principle,” in Proceedings of the International Symposium on Genetic and Evolutionary Computation, pp. 158–170, 2003.
  23. G. Meng and C. Qiuhong, “A new immune algorithm and its application,” WSEAS Transactions on Computers, vol. 9, no. 1, pp. 72–82, 2010. View at Google Scholar · View at Scopus
  24. C. Huizar, O. Montiel-Ross, R. Sepulveda, and F. J. D. Delgadillo, “Path planning using clonal selection algorithm,” in Proceedings of the International Symposium on Hybrid Intelligent Systems, pp. 303–312, Springer, 2013.
  25. R.-C. Liu, H.-F. Du, and L.-C. Jiao, “An immune monoclonal strategy algorithm,” Acta Electronica Sinica, vol. 32, no. 11, pp. 1880–1884, 2004. View at Google Scholar · View at Scopus
  26. Y. Shen and M. Yuan, “A novel poly-clone particle swarm optimization algorithm and its application in mobile robot path planning,” in Proceedings of the Chinese Control and Decision Conference (CCDC '10), pp. 2271–2276, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-W. Yu and W.-J. Yan, “Design of low-level motion controller for a two-wheel mobile mini-robot,” Journal of Mechanical and Electrical Engineering Magazine, vol. 23, no. 9, pp. 38–46, 2006. View at Google Scholar