Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 128694, 9 pages
http://dx.doi.org/10.1155/2012/128694
Research Article

Decreased Skin-Mediated Detoxification Contributes to Oxidative Stress and Insulin Resistance

1Department of Physiology, Medical College, Dalian University, Dalian 116622, China
2Department of Histology and Embryology, Medical College, Dalian University, Dalian 116622, China
3Department of Pathology, Xinxiang Medical College, Xinxiang 453003, China
4Department of Physiology, China Medical University, Shenyang 110001, China
5College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China

Received 21 February 2012; Revised 28 May 2012; Accepted 12 June 2012

Academic Editor: Pietro Galassetti

Copyright © 2012 Xing-Xing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. J. Henriksen, M. K. Diamond-Stanic, and E. M. Marchionne, “Oxidative stress and the etiology of insulin resistance and type 2 diabetes,” Free Radical Biology and Medicine, no. 5, pp. 993–999, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. S. Zhou, Y. M. Zhou, D. Li, and Y. Z. Lun, “Dietary methyl-consuming compounds and metabolic syndrome,” Hypertension Research, vol. 34, no. 12, pp. 1239–1245, 2011. View at Google Scholar
  4. S. Mena, A. Ortega, and J. M. Estrela, “Oxidative stress in environmental-induced carcinogenesis,” Mutation Research—Genetic Toxicology and Environmental Mutagenesis, vol. 674, no. 1-2, pp. 36–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Eisenhofer, I. J. Kopin, and D. S. Goldstein, “Catecholamine metabolism: a contemporary view with implications for physiology and medicine,” Pharmacological Reviews, vol. 56, no. 3, pp. 331–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. E. L. Giller Jr., J. G. Young, X. O. Breakefield, C. Carbonari, M. Braverman, and D. J. Cohen, “Monoamine oxidase and catechol-O-methyltransferase activities in cultured fibroblasts and blood cells from children with autism and the Gilles de la Tourette syndrome,” Psychiatry Research, vol. 2, no. 2, pp. 187–197, 1980. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Pannatier, P. Jenner, B. Testa, and J. C. Etter, “The skin as a drug-metabolizing organ,” Drug Metabolism Reviews, vol. 8, no. 2, pp. 319–343, 1978. View at Google Scholar · View at Scopus
  9. C. K. Svensson, “Biotransformation of drugs in human skin,” Drug Metabolism and Disposition, vol. 37, no. 2, pp. 247–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Korkina and S. Pastore, “The role of redox regulation in the normal physiology and inflammatory diseases of skin,” Frontiers in Bioscience, vol. 1, pp. 123–141, 2009. View at Google Scholar · View at Scopus
  11. H. L. Johnson and H. I. Maibach, “Drug excretion in human eccrine sweat,” Journal of Investigative Dermatology, vol. 56, no. 3, pp. 182–188, 1971. View at Google Scholar · View at Scopus
  12. F. O. Omokhodion and J. M. Howard, “Trace elements in the sweat of acclimatized persons,” Clinica Chimica Acta, vol. 231, no. 1, pp. 23–28, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Sato, “The physiology, pharmacology, and biochemistry of the eccrine sweat gland,” Reviews of Physiology Biochemistry and Pharmacology, vol. 79, pp. 51–131, 1977. View at Google Scholar · View at Scopus
  14. J. L. Stauber and T. M. Florence, “A comparative study of copper, lead, cadmium and zinc in human sweat and blood,” Science of the Total Environment, vol. 74, pp. 235–247, 1988. View at Publisher · View at Google Scholar · View at Scopus
  15. G. G. Gauglitz, D. N. Herndon, G. A. Kulp, W. J. Meyer III, and M. G. Jeschke, “Abnormal insulin sensitivity persists up to three years in pediatric patients post-burn,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 5, pp. 1656–1664, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Jeschke, C. C. Finnerty, D. N. Herndon, J. Song, D. Boehning, R. G. Tompkins et al., “Severe injury is associated with insulin resistance, endoplasmic reticulum stress response, and unfolded protein response,” Annals of Surgery, vol. 255, no. 2, pp. 370–378, 2012. View at Google Scholar
  17. M. G. Jeschke, G. G. Gauglitz, G. A. Kulp et al., “Long-term persistance of the pathophysiologic response to severe burn injury,” PLoS ONE, vol. 6, no. 7, Article ID e21245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Davis, M. Shibasaki, D. A. Low et al., “Sustained impairments in cutaneous vasodilation and sweating in grafted skin following long-term recovery,” Journal of Burn Care and Research, vol. 30, no. 4, pp. 675–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. J. Greenbaum, S. E. Kahn, and J. P. Palmer, “Nicotinamide's effects on glucose metabolism in subjects at risk for IDDM,” Diabetes, vol. 45, no. 11, pp. 1631–1634, 1996. View at Google Scholar · View at Scopus
  20. S. S. Zhou, D. Li, W. P. Sun et al., “Nicotinamide overload may play a role in the development of type 2 diabetes,” World Journal of Gastroenterology, vol. 15, no. 45, pp. 5674–5684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Li, W. P. Sun, Y. M. Zhou et al., “Chronic niacin overload may be involved in the increased prevalence of obesity in US children,” World Journal of Gastroenterology, vol. 16, no. 19, pp. 2378–2387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Aksoy, C. L. Szumlanski, and R. M. Weinshilboum, “Human liver nicotinamide N-methyltransferase. cDNA cloning, expression, and biochemical characterization,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14835–14840, 1994. View at Google Scholar · View at Scopus
  23. R. Seifert, J. Hoshino, and H. Kröger, “Nicotinamide methylation. tissue distribution, developmental and neoplastic changes,” Biochimica et Biophysica Acta, vol. 801, no. 2, pp. 259–264, 1984. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Steiling, B. Munz, S. Werner, and M. Brauchle, “Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair,” Experimental Cell Research, vol. 247, no. 2, pp. 484–494, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. W. J. Crinnion, “Sauna as a valuable clinical tool for cardiovascular, autoimmune, toxicant—induced and other chronic health problems,” Alternative Medicine Review, vol. 16, no. 3, pp. 215–225, 2011. View at Google Scholar
  26. T. Takemura, P. W. Wertz, and K. Sato, “Free fatty acids and sterols in human eccrine sweat,” British Journal of Dermatology, vol. 120, no. 1, pp. 43–47, 1989. View at Google Scholar · View at Scopus
  27. C. A. Peralta, M. Kurella, J. C. Lo, and G. M. Chertow, “The metabolic syndrome and chronic kidney disease,” Current Opinion in Nephrology and Hypertension, vol. 15, no. 4, pp. 361–365, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Watanabe, R. Yaginuma, K. Ikejima, and A. Miyazaki, “Liver diseases and metabolic syndrome,” Journal of Gastroenterology, vol. 43, no. 7, pp. 509–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. S. S. Zhou, D. Li, Y. M. Zhou, and J. M. Cao, “The skin function: a factor of anti-metabolic syndrome,” Diabetology & Metabolic Syndrome, vol. 4, no. 1, p. 15, 2012. View at Google Scholar
  30. J. Krop, “Chemical sensitivity after intoxication at work with solvents: response to sauna therapy,” Journal of Alternative and Complementary Medicine, vol. 4, no. 1, pp. 77–86, 1998. View at Google Scholar · View at Scopus
  31. B. A. Foex, “Systemic responses to trauma,” British Medical Bulletin, vol. 55, no. 4, pp. 726–743, 1999. View at Google Scholar · View at Scopus
  32. H. S. Bagry, S. Raghavendran, and F. Carli, “Metabolic syndrome and insulin resistance: perioperative considerations,” Anesthesiology, vol. 108, no. 3, pp. 506–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Kanikowska, J. Sugenoya, M. Sato et al., “Seasonal variation in blood concentrations of interleukin-6, adrenocorticotrophic hormone, metabolites of catecholamine and cortisol in healthy volunteers,” International Journal of Biometeorology, vol. 53, no. 6, pp. 479–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. K. J. Radke and J. L. Izzo, “Seasonal variation in haemodynamics and blood pressure-regulating hormones,” Journal of Human Hypertension, vol. 24, no. 6, pp. 410–416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Doró, R. Benko, M. Matuz, and G. Soós, “Seasonality in the incidence of type 2 diabetes: a population-based study,” Diabetes Care, vol. 29, no. 1, p. 173, 2006. View at Google Scholar · View at Scopus
  36. F. Kamezaki, S. Sonoda, Y. Tomotsune, H. Yunaka, and Y. Otsuji, “Seasonal variation in metabolic syndrome prevalence,” Hypertension Research, vol. 33, no. 6, pp. 568–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Talpash, “Skin reactions to cold,” Canadian Family Physician, vol. 22, pp. 40–42, 1976. View at Google Scholar