Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 628978, 12 pages
http://dx.doi.org/10.1155/2012/628978
Review Article

Autophagy as a Therapeutic Target in Diabetic Nephropathy

1Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
2Division of Diabetes & Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa 920-0293, Japan

Received 14 May 2011; Revised 1 August 2011; Accepted 17 August 2011

Academic Editor: Ki-Up Lee

Copyright © 2012 Yuki Tanaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Amos, D. J. McCarty, and P. Zimmet, “The rising global burden of diabetes and its complications: estimates and projections to the year 2010,” Diabetic Medicine, vol. 14, supplement 5, pp. S1–S85, 1997. View at Google Scholar · View at Scopus
  2. A. H. Mokdad, E. S. Ford, B. A. Bowman et al., “Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001,” Journal of the American Medical Association, vol. 289, no. 1, pp. 76–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. N. Lasaridis and P. A. Sarafidis, “Diabetic nephropathy and antihypertensive treatment: what are the lessons from clinical trials?” American Journal of Hypertension, vol. 16, no. 8, pp. 689–697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Molitch, R. A. DeFronzo, M. J. Franz et al., “Nephropathy in diabetes,” Diabetes Care, vol. 27, supplement 1, pp. S79–S83, 2004. View at Google Scholar · View at Scopus
  5. J. M. Forbes, V. Thallas, M. C. Thomas et al., “The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes,” FASEB Journal, vol. 17, no. 12, pp. 1762–1764, 2003. View at Google Scholar · View at Scopus
  6. D. Koya, M. R. Jirousek, Y. W. Lin, H. Ishii, K. Kuboki, and G. L. King, “Characterization of protein kinase C β isoform activation on the gene expression of transforming growth factor-β, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats,” Journal of Clinical Investigation, vol. 100, no. 1, pp. 115–126, 1997. View at Google Scholar · View at Scopus
  7. M. Dunlop, “Aldose reductase and the role of the polyol pathway in diabetic nephropathy,” Kidney International, Supplement, vol. 58, no. 77, pp. S3–S12, 2000. View at Google Scholar · View at Scopus
  8. T. Miyata and C. V. Y. de Strihou, “Diabetic nephropathy: a disorder of oxygen metabolism?” Nature Reviews Nephrology, vol. 6, no. 2, pp. 83–95, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. D. K. Singh, P. Winocour, and K. Farrington, “Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy,” Nature Clinical Practice Nephrology, vol. 4, no. 4, pp. 216–226, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. H. Ha, I. A. Hwang, J. H. Park, and H. B. Lee, “Role of reactive oxygen species in the pathogenesis of diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 82, supplement 1, pp. S42–S45, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. F. A. Hakim and A. Pflueger, “Role of oxidative stress in diabetic kidney disease,” Medical Science Monitor, vol. 16, no. 2, pp. RA37–RA48, 2010. View at Google Scholar · View at Scopus
  12. N. Kashihara, Y. Haruna, V. K. Kondeti, and Y. S. Kanwar, “Oxidative stress in diabetic nephropathy,” Current Medicinal Chemistry, vol. 17, no. 34, pp. 4256–4269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. V. Cybulsky, “Endoplasmic reticulum stressin proteinuric kidney disease,” Kidney International, vol. 77, no. 3, pp. 187–193, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. W. Qi, J. Mu, Z. F. Luo et al., “Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response,” Metabolism, vol. 60, no. 5, pp. 594–603, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Wu, R. Zhang, M. Torreggiani et al., “Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation,” American Journal of Pathology, vol. 176, no. 5, pp. 2163–2176, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. C. Ebato, T. Uchida, M. Arakawa et al., “Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet,” Cell Metabolism, vol. 8, no. 4, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Masini, M. Bugliani, R. Lupi et al., “Autophagy in human type 2 diabetes pancreatic beta cells,” Diabetologia, vol. 52, no. 6, pp. 1083–1086, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Y. Fujitani, R. Kawamori, and H. Watada, “The role of autophagy in pancreatic β-cell and diabetes,” Autophagy, vol. 5, no. 2, pp. 280–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. H. S. Jung, K. W. Chung, J. W. Kim et al., “Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia,” Cell Metabolism, vol. 8, no. 4, pp. 318–324, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. M. Cuervo and J. F. Dice, “Age-related decline in chaperone-mediated autophagy,” Journal of Biological Chemistry, vol. 275, no. 40, pp. 31505–31513, 2000. View at Google Scholar · View at Scopus
  23. A. Donati, G. Cavallini, C. Paradiso et al., “Age-related changes in the regulation of autophagic proteolysis in rat isolated hepatocytes,” Journals of Gerontology—Series A, vol. 56, no. 7, pp. B288–B293, 2001. View at Google Scholar
  24. A. Terman, “The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes,” Gerontology, vol. 41, supplement 2, pp. 319–326, 1995. View at Google Scholar · View at Scopus
  25. S. Vittorini, C. Paradiso, A. Donati et al., “The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities,” Journals of Gerontology—Series A, vol. 54, no. 8, pp. B318–B323, 1999. View at Google Scholar
  26. S. Kume, T. Uzu, K. Horiike et al., “Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1043–1055, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. B. Hartleben, M. Gödel, C. Meyer-Schwesinger et al., “Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1084–1096, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. Jiang, K. Liu, J. Luo, and Z. Dong, “Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury,” American Journal of Pathology, vol. 176, no. 3, pp. 1181–1192, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. T. Kimura, Y. Takabatake, A. Takahashi et al., “Autophagy protects the proximal tubule from degeneration and acute ischemic injury,” Journal of the American Society of Nephrology, vol. 22, no. 5, pp. 902–913, 2011. View at Publisher · View at Google Scholar · View at PubMed
  30. S. Periyasamy-Thandavan, M. Jiang, Q. Wei, R. Smith, X. M. Yin, and Z. Dong, “Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells,” Kidney International, vol. 74, no. 5, pp. 631–640, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. K. Inoue, H. Kuwana, Y. Shimamura et al., “Cisplatin-induced macroautophagy occurs prior to apoptosis in proximal tubules in vivo,” Clinical and Experimental Nephrology, vol. 14, no. 2, pp. 112–122, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Sakaguchi, M. Isono, K. Isshiki, T. Sugimoto, D. Koya, and A. Kashiwagi, “Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice,” Biochemical and Biophysical Research Communications, vol. 340, no. 1, pp. 296–301, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. Y. Yang, J. Wang, L. Qin et al., “Rapamycin prevents early steps of the development of diabetic nephropathy in rats,” American Journal of Nephrology, vol. 27, no. 5, pp. 495–502, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. N. Lloberas, J. M. Cruzado, M. Franquesa et al., “Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1395–1404, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. K. Inoki, “Role of TSC-mTOR pathway in diabetic nephropathy,” Diabetes Research and Clinical Practice, vol. 82, supplement 1, pp. S59–S62, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. Sharma, S. RamachandraRao, G. Qiu et al., “Adiponectin regulates albuminuria and podocyte function in mice,” Journal of Clinical Investigation, vol. 118, no. 5, pp. 1645–1656, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. K. Hwi, Z. Zhang, Y. J. Dae et al., “Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart,” Diabetes, vol. 58, no. 11, pp. 2536–2546, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. C. Kusmic, A. L'Abbate, G. Sambuceti et al., “Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling,” Journal of Cellular Biochemistry, vol. 109, no. 5, pp. 1033–1044, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. Z. Guo, C. Zheng, Z. Qin, and P. Wei, “Effect of telmisartan on the expression of cardiac adiponectin and its receptor 1 in type 2 diabetic rats,” Journal of Pharmacy and Pharmacology, vol. 63, no. 1, pp. 87–94, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. D. F. Ding, N. You, X. M. Wu et al., “Resveratrol attenuates renal hypertrophy in early-stage diabetes by activating AMPK,” American Journal of Nephrology, vol. 31, no. 4, pp. 363–374, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. F. Liang, S. Kume, and D. Koya, “SIRT1 and insulin resistance,” Nature Reviews Endocrinology, vol. 5, no. 7, pp. 367–373, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. Kume, U. Takashi, K. Atsunori, and K. Daisuke, “SIRT1, A calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications,” Endocrine, Metabolic and Immune Disorders—Drug Targets, vol. 10, no. 1, pp. 16–24, 2010. View at Google Scholar · View at Scopus
  43. S. Maeda, D. Koya, S. I. Araki et al., “Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes,” Clinical and Experimental Nephrology, vol. 15, no. 3, pp. 381–390, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. G. Kroemer, G. Mariño, and B. Levine, “Autophagy and the integrated stress response,” Molecular Cell, vol. 40, no. 2, pp. 280–293, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. J. Klionsky, “The molecular machinery of autophagy: unanswered questions,” Journal of Cell Science, vol. 118, part 1, pp. 7–18, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. C. Massey, C. Zhang, and A. M. Cuervo, “Chaperone-mediated autophagy in aging and disease,” Current Topics in Developmental Biology, vol. 73, pp. 205–235, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation,” Nature Cell Biology, vol. 11, no. 12, pp. 1433–1437, 2009. View at Google Scholar · View at Scopus
  48. P. Ylä-Anttila, H. Vihinen, E. Jokitalo, and E. L. Eskelinen, “3D tomography reveals connections between the phagophore and endoplasmic reticulum,” Autophagy, vol. 5, no. 8, pp. 1180–1185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan et al., “Mitochondria supply membranes for autophagosome biogenesis during starvation,” Cell, vol. 141, no. 4, pp. 656–667, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, “Plasma membrane contributes to the formation of pre-autophagosomal structures,” Nature Cell Biology, vol. 12, no. 8, pp. 747–757, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. I. G. Ganley, D. H. Lam, J. Wang, X. Ding, S. Chen, and X. Jiang, “ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12297–12305, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. N. Hosokawa, T. Hara, T. Kaizuka et al., “Nutrient-dependent mTORCl association with the ULK1-Atg13-FIP200 complex required for autophagy,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1981–1991, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. C. H. Jung, C. B. Jun, S. H. Ro et al., “ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery,” Molecular Biology of the Cell, vol. 20, no. 7, pp. 1992–2003, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. X. H. Liang, S. Jackson, M. Seaman et al., “Induction of autophagy and inhibition of tumorigenesis by beclin 1,” Nature, vol. 402, no. 6762, pp. 672–676, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. Pattingre, L. Espert, M. Biard-Piechaczyk, and P. Codogno, “Regulation of macroautophagy by mTOR and beclin 1 complexes,” Biochimie, vol. 90, no. 2, pp. 313–323, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, “Dynamics and diversity in autophagy mechanisms: lessons from yeast,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 458–467, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. B. Ravikumar, S. Sarkar, J. E. Davies et al., “Regulation of mammalian autophagy in physiology and pathophysiology,” Physiological Reviews, vol. 90, no. 4, pp. 1383–1435, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. N. Mizushima, T. Yoshimori, and B. Levine, “Methods in mammalian autophagy research,” Cell, vol. 140, no. 3, pp. 313–326, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. N. Mizushima and B. Levine, “Autophagy in mammalian development and differentiation,” Nature Cell Biology, vol. 12, no. 9, pp. 823–830, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. D. J. Klionsky, H. Abeliovich, P. Agostinis et al., “Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes,” Autophagy, vol. 4, no. 2, pp. 151–175, 2008. View at Google Scholar · View at Scopus
  62. M. Komatsu, S. Waguri, M. Koike et al., “Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice,” Cell, vol. 131, no. 6, pp. 1149–1163, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. G. Bjørkøy, T. Lamark, A. Brech et al., “p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death,” Journal of Cell Biology, vol. 171, no. 4, pp. 603–614, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. C. H. Lee, K. Inoki, and K. L. Guan, “mTOR pathway as a target in tissue hypertrophy,” Annual Review of Pharmacology and Toxicology, vol. 47, pp. 443–467, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. J. K. Chen, J. Chen, E. G. Neilson, and R. C. Harris, “Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy,” Journal of the American Society of Nephrology, vol. 16, no. 5, pp. 1384–1391, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. K. Sataranatarajan, M. M. Mariappan, J. L. Myung et al., “Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin,” American Journal of Pathology, vol. 171, no. 6, pp. 1733–1742, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. H. Mori, K. Inoki, K. Masutani et al., “The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential,” Biochemical and Biophysical Research Communications, vol. 384, no. 4, pp. 471–475, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. M. Gödel, B. Hartleben, N. Herbach et al., “Role of mTOR in podocyte function and diabetic nephropathy in humans and mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2197–2209, 2011. View at Publisher · View at Google Scholar · View at PubMed
  69. K. Inoki, H. Mori, J. Wang et al., “mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2181–2196, 2011. View at Publisher · View at Google Scholar · View at PubMed
  70. M. Mehrpour, A. Esclatine, I. Beau, and P. Codogno, “Overview of macroautophagy regulation in mammalian cells,” Cell Research, vol. 20, no. 7, pp. 748–762, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. D. D. Sarbassov, S. M. Ali, and D. M. Sabatini, “Growing roles for the mTOR pathway,” Current Opinion in Cell Biology, vol. 17, no. 6, pp. 596–603, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. A. Efeyan and D. M. Sabatini, “MTOR and cancer: many loops in one pathway,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 169–176, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. Q. Yang and K. L. Guan, “Expanding mTOR signaling,” Cell Research, vol. 17, no. 8, pp. 666–681, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. D. A. Guertin, D. M. Stevens, M. Saitoh et al., “mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice,” Cancer Cell, vol. 15, no. 2, pp. 148–159, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. D. S. Dos, S. M. Ali, D. H. Kim et al., “Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton,” Current Biology, vol. 14, no. 14, pp. 1296–1302, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. N. Mizushima, “The role of the Atg1/ULK1 complex in autophagy regulation,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 132–139, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. J. E. Kim and J. Chen, “Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signaling and translation initiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14340–14345, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. N. Pallet, N. Bouvier, C. Legendre et al., “Autophagy protects renal tubular cells against cyclosporine toxicity,” Autophagy, vol. 4, no. 6, pp. 783–791, 2008. View at Google Scholar
  81. P. G. Cammisotto, I. Londono, D. Gingras, and M. Bendayan, “Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats,” American Journal of Physiology—Renal Physiology, vol. 294, no. 4, pp. F881–F889, 2008. View at Publisher · View at Google Scholar · View at PubMed
  82. M. Kitada, S. Kume, N. Imaizumi, and D. Koya, “Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1- independent pathway,” Diabetes, vol. 60, no. 2, pp. 634–643, 2011. View at Publisher · View at Google Scholar · View at PubMed
  83. J. Sokolovska, S. Isajevs, O. Sugoka et al., “Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model,” Archives of Physiology and Biochemistry, vol. 116, no. 3, pp. 137–145, 2010. View at Publisher · View at Google Scholar · View at PubMed
  84. T. Yamazaki, M. Tanimoto, T. Gohda et al., “Combination effects of enalapril and losartan on lipid peroxidation in the kidneys of KK-Ay/Ta mice,” Nephron—Experimental Nephrology, vol. 113, no. 2, pp. e66–e76, 2009. View at Publisher · View at Google Scholar · View at PubMed
  85. C. C. Chang, C. Y. Chang, Y. T. Wu, J. P. Huang, T. H. Yen, and L. M. Hung, “Resveratrol retards progression of diabetic nephropathy through modulations of oxidative stress, proinflammatory cytokines, and AMP-activated protein kinase,” Journal of Biomedical Science, vol. 18, no. 1, p. 47, 2011. View at Publisher · View at Google Scholar · View at PubMed
  86. M. J. Lee, D. Feliers, M. M. Mariappan et al., “A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy,” American Journal of Physiology—Renal Physiology, vol. 292, no. 2, pp. F617–F627, 2007. View at Publisher · View at Google Scholar · View at PubMed
  87. S. Kume, T. Uzu, S. I. Araki et al., “Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet,” Journal of the American Society of Nephrology, vol. 18, no. 10, pp. 2715–2723, 2007. View at Publisher · View at Google Scholar · View at PubMed
  88. Y. Tanaka, S. Kume, S. I. Araki et al., “Fenofibrate, a PPARα agonist, has renoprotective effects in mice by enhancing renal lipolysis,” Kidney International, vol. 79, no. 8, pp. 871–882, 2011. View at Publisher · View at Google Scholar · View at PubMed
  89. T. Jiang, Z. Wang, G. Proctor et al., “Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway,” Journal of Biological Chemistry, vol. 280, no. 37, pp. 32317–32325, 2005. View at Publisher · View at Google Scholar · View at PubMed
  90. Z. Wang, T. Jiang, J. Li et al., “Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes,” Diabetes, vol. 54, no. 8, pp. 2328–2335, 2005. View at Publisher · View at Google Scholar
  91. A. K. Saha and N. B. Ruderman, “Malonyl-CoA and AMP-activated protein kinase: an expanding partnership,” Molecular and Cellular Biochemistry, vol. 253, no. 1-2, pp. 65–70, 2003. View at Publisher · View at Google Scholar
  92. C. Cantó and J. Auwerx, “AMP-activated protein kinase and its downstream transcriptional pathways,” Cellular and Molecular Life Sciences, vol. 67, no. 20, pp. 3407–3423, 2010. View at Publisher · View at Google Scholar · View at PubMed
  93. G. R. Steinberg and B. E. Kemp, “AMPK in health and disease,” Physiological Reviews, vol. 89, no. 3, pp. 1025–1078, 2009. View at Publisher · View at Google Scholar · View at PubMed
  94. J. W. Lee, S. Park, Y. Takahashi, and H. G. Wang, “The association of AMPK with ULK1 regulates autophagy,” PLoS ONE, vol. 5, no. 11, Article ID e15394, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. C. Behrends, M. E. Sowa, S. P. Gygi, and J. W. Harper, “Network organization of the human autophagy system,” Nature, vol. 466, no. 7302, pp. 68–76, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. S. I. Imai and L. Guarente, “Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases,” Trends in Pharmacological Sciences, vol. 31, no. 5, pp. 212–220, 2010. View at Publisher · View at Google Scholar · View at PubMed
  97. M. C. Haigis and D. A. Sinclair, “Mammalian sirtuins: biological insights and disease relevance,” Annual Review of Pathology, vol. 5, pp. 253–295, 2010. View at Publisher · View at Google Scholar · View at PubMed
  98. H. L. In, L. Cao, R. Mostoslavsky et al., “A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3374–3379, 2008. View at Publisher · View at Google Scholar · View at PubMed
  99. K. Tikoo, D. N. Tripathi, D. G. Kabra, V. Sharma, and A. B. Gaikwad, “Intermittent fasting prevents the progression of type I diabetic nephropathy in rats and changes the expression of Sir2 and p53,” FEBS Letters, vol. 581, no. 5, pp. 1071–1078, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. K. Tikoo, K. Singh, D. Kabra, V. Sharma, and A. Gaikwad, “Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy,” Free Radical Research, vol. 42, no. 4, pp. 397–404, 2008. View at Publisher · View at Google Scholar · View at PubMed
  101. D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, and M. Haneda, “Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats,” Journal of the American Society of Nephrology, vol. 14, no. 8, supplement 3, pp. S250–S253, 2003. View at Google Scholar
  102. M. L. Brezniceanu, F. Liu, C. C. Wei et al., “Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice,” Kidney International, vol. 71, no. 9, pp. 912–923, 2007. View at Publisher · View at Google Scholar · View at PubMed
  103. E. Morse, J. Schroth, N. H. You et al., “TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1,” American Journal of Physiology—Renal Physiology, vol. 299, no. 5, pp. F965–F972, 2010. View at Publisher · View at Google Scholar · View at PubMed
  104. M. Kitada, A. Takeda, T. Nagai et al., “Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in Diabetic Wistar fatty (fa/fa) rats, a model of type 2 diabetes,” Experimental Diabetes Research, vol. 2011, Article ID 908185, 11 pages, 2011. View at Google Scholar
  105. I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective degradation of mitochondria by mitophagy,” Archives of Biochemistry and Biophysics, vol. 462, no. 2, pp. 245–253, 2007. View at Publisher · View at Google Scholar · View at PubMed
  106. L. Liu, D. R. Wise, J. A. Diehl, and M. C. Simon, “Hypoxic reactive oxygen species regulate the integrated stress response and cell survival,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 31153–31162, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. C. M. Peterson, R. L. Jones, and R. J. Koenig, “Reversible hematologic sequelae of diabetes mellitus,” Annals of Internal Medicine, vol. 86, no. 4, pp. 425–429, 1977. View at Google Scholar
  108. R. L. Jones and C. M. Peterson, “Hematologic alterations in diabetes mellitus,” American Journal of Medicine, vol. 70, no. 2, pp. 339–352, 1981. View at Google Scholar
  109. P. Katavetin, T. Miyata, R. Inagi et al., “High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1405–1413, 2006. View at Publisher · View at Google Scholar · View at PubMed
  110. A. J. Majmundar, W. J. Wong, and M. C. Simon, “Hypoxia-inducible factors and the response to hypoxic stress,” Molecular Cell, vol. 40, no. 2, pp. 294–309, 2010. View at Publisher · View at Google Scholar · View at PubMed
  111. N. M. Mazure and J. Pouysségur, “Hypoxia-induced autophagy: cell death or cell survival?” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 177–180, 2010. View at Publisher · View at Google Scholar · View at PubMed
  112. G. Bellot, R. Garcia-Medina, P. Gounon et al., “Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains,” Molecular and Cellular Biology, vol. 29, no. 10, pp. 2570–2581, 2009. View at Publisher · View at Google Scholar · View at PubMed
  113. S. L. Archer, M. Gomberg-Maitland, M. L. Maitland, S. Rich, J. G. N. Garcia, and E. K. Weir, “Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1α-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 294, no. 2, pp. H570–H578, 2008. View at Publisher · View at Google Scholar · View at PubMed
  114. J. Sieber, M. T. Lindenmeyer, K. Kampe et al., “Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids,” American Journal of Physiology—Renal Physiology, vol. 299, no. 4, pp. F821–F829, 2010. View at Publisher · View at Google Scholar · View at PubMed
  115. M. T. Lindenmeyer, M. P. Rastaldi, M. Ikehata et al., “Proteinuria and hyperglycemia induce endoplasmic reticulum stress,” Journal of the American Society of Nephrology, vol. 19, no. 11, pp. 2225–2236, 2008. View at Publisher · View at Google Scholar · View at PubMed
  116. S. Hummasti and G. S. Hotamisligil, “Endoplasmic reticulum stress and inflammation in obesity and diabetes,” Circulation Research, vol. 107, no. 5, pp. 579–591, 2010. View at Publisher · View at Google Scholar · View at PubMed
  117. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at PubMed
  118. D. T. Rutkowski and R. J. Kaufman, “That which does not kill me makes me stronger: adapting to chronic ER stress,” Trends in Biochemical Sciences, vol. 32, no. 10, pp. 469–476, 2007. View at Publisher · View at Google Scholar · View at PubMed
  119. K. M. A. Rouschop, T. V. D. Beucken, L. Dubois et al., “The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 127–141, 2010. View at Publisher · View at Google Scholar · View at PubMed
  120. T. Tanaka, H. Kato, I. Kojima et al., “Hypoxia and expression of hypoxia-inducible factor in the aging kidney,” Journals of Gerontology—Series A, vol. 61, no. 8, pp. 795–805, 2006. View at Google Scholar
  121. H. Zhang, M. Bosch-Marce, L. A. Shimoda et al., “Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10892–10903, 2008. View at Publisher · View at Google Scholar · View at PubMed
  122. C. Mammucari, G. Milan, V. Romanello et al., “FoxO3 controls autophagy in skeletal muscle in vivo,” Cell Metabolism, vol. 6, no. 6, pp. 458–471, 2007. View at Publisher · View at Google Scholar · View at PubMed