Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012 (2012), Article ID 642038, 16 pages
http://dx.doi.org/10.1155/2012/642038
Review Article

Mitochondrial Dysregulation in the Pathogenesis of Diabetes: Potential for Mitochondrial Biogenesis-Mediated Interventions

1Department of Biology, York University, Toronto, ON, Canada M3J 1P3
2Muscle Health Research Center (MHRC), York University, Toronto, ON, Canada M3J 1P3
3Division of Kinesiology, Laval University, Québec City, QC, Canada G1K 7P4
4Department of Cardiac Surgery, Laval University, Québec City, QC, Canada G1V 4G5
5School of Kinesiology and Health Science, York University, Room 302, Farquharson Life Sciences Building, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Received 7 June 2011; Accepted 8 September 2011

Academic Editor: Robert A. Harris

Copyright © 2012 Anna-Maria Joseph et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Patti and S. Corvera, “The role of mitochondria in the pathogenesis of type 2 diabetes,” Endocrine Reviews, vol. 31, no. 3, pp. 364–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. F. Petersen and G. I. Shulman, “Etiology of insulin resistance,” The American Journal of Medicine, vol. 119, no. 5, supplement 1, pp. S10–S16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. E. W. Kraegen, P. W. Clark, A. B. Jenkins, E. A. Daley, D. J. Chisholm, and L. H. Storlien, “Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats,” Diabetes, vol. 40, no. 11, pp. 1397–1403, 1991. View at Google Scholar · View at Scopus
  4. J. C. Russell, G. Shillabeer, J. Bar-Tana et al., “Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16,” Diabetes, vol. 47, no. 5, pp. 770–778, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Y. Seo, A. M. Joseph, D. Dutta, J. C. Y. Hwang, J. P. Aris, and C. Leeuwenburgh, “New insights into the role of mitochondria in aging: mitochondrial dynamics and more,” Journal of Cell Science, vol. 123, part 15, pp. 2533–2542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Yoon, C. A. Galloway, B. S. Jhun, and T. Yu, “Mitochondrial dynamics in diabetes,” Antioxidants and Redox Signaling, vol. 14, no. 3, pp. 439–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. D. E. Kelley, B. Goodpaster, R. R. Wing, and J. A. Simoneau, “Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss,” American Journal of Physiology, vol. 277, no. 6, part 1, pp. E1130–E1141, 1999. View at Google Scholar · View at Scopus
  8. T. R. Koves, J. R. Ussher, R. C. Noland et al., “Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance,” Cell Metabolism, vol. 7, no. 1, pp. 45–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Lillioja, A. A. Young, C. L. Culter et al., “Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man,” Journal of Clinical Investigation, vol. 80, no. 2, pp. 415–424, 1987. View at Google Scholar · View at Scopus
  10. M. Mogensen, K. Sahlin, M. Fernström et al., “Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes,” Diabetes, vol. 56, no. 6, pp. 1592–1599, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. Dyck, S. J. Peters, J. Glatz et al., “Functional differences in lipid metabolism in resting skeletal muscle of various fiber types,” American Journal of Physiology, vol. 272, no. 3, part 1, pp. E340–E351, 1997. View at Google Scholar · View at Scopus
  12. E. J. Anderson, H. Yamazaki, and P. D. Neufer, “Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration,” Journal of Biological Chemistry, vol. 282, no. 43, pp. 31257–31266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. DeFronzo, E. Jacot, E. Jequier, E. Maeder, J. Wahren, and J. P. Felber, “The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization,” Diabetes, vol. 30, no. 12, pp. 1000–1007, 1981. View at Google Scholar · View at Scopus
  14. R. A. DeFronzo, R. Gunnarsson, and O. Bjorkman, “Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus,” Journal of Clinical Investigation, vol. 76, no. 1, pp. 149–155, 1985. View at Google Scholar · View at Scopus
  15. F. R. Jornayvaz and G. I. Shulman, “Regulation of mitochondrial biogenesis,” Essays in Biochemistry, vol. 47, pp. 69–84, 2010. View at Google Scholar
  16. I. R. Lanza and K. Sreekumaran Nair, “Regulation of skeletal muscle mitochondrial function: genes to proteins,” Acta Physiologica, vol. 199, no. 4, pp. 529–547, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. A. Hood, M. Takahashi, M. K. Connor, and D. Freyssenet, “Assembly of the cellular powerhouse: current issues in muscle mitochondrial biogenesis,” Exercise and Sport Sciences Reviews, vol. 28, no. 2, pp. 68–73, 2000. View at Google Scholar · View at Scopus
  18. V. Ljubicic, A. M. Joseph, A. Saleem et al., “Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 223–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. E. Kelley, K. V. Williams, and J. C. Price, “Insulin regulation of glucose transport and phosphorylation in skeletal muscle assessed by PET,” American Journal of Physiology, vol. 277, no. 2, part 1, pp. E361–E369, 1999. View at Google Scholar · View at Scopus
  20. B. H. Goodpaster, R. Theriault, S. C. Watkins, and D. E. Kelley, “Intramuscular lipid content is increased in obesity and decreased by weight loss,” Metabolism: Clinical and Experimental, vol. 49, no. 4, pp. 467–472, 2000. View at Google Scholar · View at Scopus
  21. K. F. Petersen, D. Befroy, S. Dufour et al., “Mitochondrial dysfunction in the elderly: possible role in insulin resistance,” Science, vol. 300, no. 5622, pp. 1140–1142, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Morino, K. F. Petersen, S. Dufour et al., “Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3587–3593, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Gaster, A. C. Rustan, V. Aas, and H. Beck-Nielsen, “Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes,” Diabetes, vol. 53, no. 3, pp. 542–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. M. W. van den Ouweland, H. H. P. J. Lemkes, W. Ruitenbeek et al., “Mutation in mitochondrial tRMALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness,” Nature Genetics, vol. 1, no. 5, pp. 368–371, 1992. View at Google Scholar · View at Scopus
  25. V. K. Mootha, C. M. Lindgren, K. F. Eriksson et al., “PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes,” Nature Genetics, vol. 34, no. 3, pp. 267–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. M. E. Patti, A. J. Butte, S. Crunkhorn et al., “Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8466–8471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. Scarpulla, “Nuclear control of respiratory chain expression in mammalian cells,” Journal of Bioenergetics and Biomembranes, vol. 29, no. 2, pp. 109–119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Lenka, C. Vijayasarathy, J. Mullick, and N. G. Avadhani, “Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex,” Progress in Nucleic Acid Research and Molecular Biology, vol. 61, pp. 309–344, 1998. View at Google Scholar · View at Scopus
  29. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Zaid, R. Li, K. Luciakova, P. Barath, S. Nery, and B. D. Nelson, “On the role of the general transcription factor Sp1 in the activation and repression of diverse mammalian oxidative phosphorylation genes,” Journal of Bioenergetics and Biomembranes, vol. 31, no. 2, pp. 129–135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Evans and R. C. Scarpulla, “NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells,” Genes and Development, vol. 4, no. 6, pp. 1023–1034, 1990. View at Google Scholar · View at Scopus
  32. J. R. Blesa, J. M. Hernández, and J. Hernández-Yago, “NRF-2 transcription factor is essential in promoting human Tomm70 gene expression,” Mitochondrion, vol. 3, no. 5, pp. 251–259, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Gleyzer, K. Vercauteren, and R. C. Scarpulla, “Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators,” Molecular and Cellular Biology, vol. 25, no. 4, pp. 1354–1366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. Lehman, P. M. Barger, A. Kovacs, J. E. Saffitz, D. M. Medeiros, and D. P. Kelly, “Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis,” Journal of Clinical Investigation, vol. 106, no. 7, pp. 847–856, 2000. View at Google Scholar · View at Scopus
  35. T. Wenz, S. G. Rossi, R. L. Rotundo, B. M. Spiegelman, and C. T. Moraes, “Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20405–20410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Lin, H. Wu, P. T. Tarr et al., “Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres,” Nature, vol. 418, no. 6899, pp. 797–801, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Wu, S. B. Kanatous, F. A. Thurmond et al., “Regulation of mitochondrial biogenesis in skeletal muscle by CaMK,” Science, vol. 296, no. 5566, pp. 349–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Pilegaard, B. Saltin, and D. P. Neufer, “Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle,” Journal of Physiology, vol. 546, supplement 3, pp. 851–858, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. J. Mahoney, G. Parise, S. Melov, A. Safdar, and M. A. Tarnopolsky, “Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise,” The FASEB Journal, vol. 19, no. 11, pp. 1498–1500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. C. Wright, D. H. Han, P. M. Garcia-Roves, P. C. Geiger, T. E. Jones, and J. O. Holloszy, “Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1α expression,” Journal of Biological Chemistry, vol. 282, no. 1, pp. 194–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Ek, G. Andersen, S. A. Urhammer et al., “Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) gene in relation to insulin sensitivity among glucose tolerant caucasians,” Diabetologia, vol. 44, no. 9, pp. 1170–1176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Kim, H. D. Shin, B. L. Park et al., “Peroxisome proliferator-activated receptor gamma coactivator 1 alpha promoter polymorphisms are associated with early-onset type 2 diabetes mellitus in the Korean population,” Diabetologia, vol. 48, no. 7, pp. 1323–1330, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. L. F. Michael, Z. Wu, R. B. Cheatham et al., “Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3820–3825, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. J. P. Silva, M. Köhler, C. Graff et al., “Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes,” Nature Genetics, vol. 26, no. 3, pp. 336–340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. E. V. Menshikova, V. B. Ritov, R. E. Ferrell, K. Azuma, B. H. Goodpaster, and D. E. Kelley, “Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity,” Journal of Applied Physiology, vol. 103, no. 1, pp. 21–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. G. P. Holloway, C. G. R. Perry, A. B. Thrush et al., “PGC-1α's relationship with skeletal muscle palmitate oxidation is not present with obesity despite maintained PGC-1α and PGC-1β protein,” American Journal of Physiology, vol. 105, no. 22, pp. 7815–7820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Handschin, S. C. Cheol, S. Chin et al., “Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic β cell crosstalk,” Journal of Clinical Investigation, vol. 117, no. 11, pp. 3463–3474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Zechner, L. Lai, J. F. Zechner et al., “Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity,” Cell Metabolism, vol. 12, no. 6, pp. 633–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Aquilano, P. Vigilanza, S. Baldelli, B. Pagliei, G. Rotilio, and M. R. Ciriolo, “Peroxisome proliferator-activated receptor γ co-activator 1 α (PGC-1α) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis,” Journal of Biological Chemistry, vol. 285, no. 28, pp. 21590–21599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Safdar, J. P. Little, A. J. Stokl, B. P. Hettinga, M. Akhtar, and M. A. Tarnopolsky, “Exercise increases mitochondrial PGC-1α content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis,” Journal of Biological Chemistry, vol. 286, no. 12, pp. 10605–10617, 2011. View at Publisher · View at Google Scholar
  51. D. Chen and L. Guarente, “SIR2: a potential target for calorie restriction mimetics,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 64–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Y. Huang, M. D. Hirschey, T. Shimazu, L. Ho, and E. Verdin, “Mitochondrial sirtuins,” Biochimica et Biophysica Acta, vol. 1804, no. 8, pp. 1645–1651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Nemoto, M. M. Fergusson, and T. Finkel, “Nutrient availability regulates SIRT1 through a forkhead-dependent pathway,” Science, vol. 306, no. 5704, pp. 2105–2108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Chen, J. Bruno, E. Easlon et al., “Tissue-specific regulation of SIRT1 by calorie restriction,” Genes and Development, vol. 22, no. 13, pp. 1753–1757, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. H. S. Kwon and M. Ott, “The ups and downs of SIRT1,” Trends in Biochemical Sciences, vol. 33, no. 11, pp. 517–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Suwa, H. Nakano, Z. Radak, and S. Kumagai, “Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor γ coactivator-1α protein expressions in rat skeletal muscle,” Metabolism: Clinical and Experimental, vol. 57, no. 7, pp. 986–998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Finkel, C. X. Deng, and R. Mostoslavsky, “Recent progress in the biology and physiology of sirtuins,” Nature, vol. 460, no. 7255, pp. 587–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Bordone, D. Cohen, A. Robinson et al., “SIRT1 transgenic mice show phenotypes resembling calorie restriction,” Aging Cell, vol. 6, no. 6, pp. 759–767, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Chen, A. D. Steele, S. Lindquist, and L. Guarente, “Medicine: increase in activity during calorie restriction requires Sirt1,” Science, vol. 310, no. 5754, p. 1641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Makino, T. Maeda, J. I. Oyama, Y. Higuchi, and K. Mimori, “Improving insulin sensitivity via activation of PPAR-γ increases telomerase activity in the heart of OLETF rats,” American Journal of Physiology, vol. 297, no. 6, pp. H2188–H2195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. R. Subauste and C. F. Burant, “Role of FoxO1 in FFA-induced oxidative stress in adipocytes,” American Journal of Physiology, vol. 293, no. 1, pp. E159–E164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. S. B. Pedersen, J. Ølholm, S. K. Paulsen, M. F. Bennetzen, and B. Richelsen, “Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women,” International Journal of Obesity, vol. 32, no. 8, pp. 1250–1255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. A. S. Banks, N. Kon, C. Knight et al., “SirT1 gain of function increases energy efficiency and prevents diabetes in mice,” Cell Metabolism, vol. 8, no. 4, pp. 333–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Fujii, T. Hayashi, M. F. Hirshman et al., “Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle,” Biochemical and Biophysical Research Communications, vol. 273, no. 3, pp. 1150–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. O. M. Palacios, J. J. Carmona, S. Michan et al., “Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle,” Aging, vol. 1, no. 9, pp. 771–783, 2009. View at Google Scholar · View at Scopus
  66. S. Nemoto, M. M. Fergusson, and T. Finkel, “SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 16456–16460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. J. T. Rodgers, C. Lerin, W. Haas, S. P. Gygi, B. M. Spiegelman, and P. Puigserver, “Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1,” Nature, vol. 434, no. 7029, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Gerhart-Hines, J. T. Rodgers, O. Bare et al., “Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α,” The EMBO Journal, vol. 26, no. 7, pp. 1913–1923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Jager, C. Handschin, J. St-Pierre, and B. M. Spiegelman, “AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 29, pp. 12017–12022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Qiang, K. Weiqiang, Z. Qing, Z. Pengju, and L. Yi, “Aging impairs insulin-stimulated glucose uptake in rat skeletal muscle via suppressing AMPKα,” Experimental and Molecular Medicine, vol. 39, no. 4, pp. 535–543, 2007. View at Google Scholar · View at Scopus
  71. R. M. Reznick, H. Zong, J. Li et al., “Aging-Associated Reductions in AMP-Activated Protein Kinase Activity and Mitochondrial Biogenesis,” Cell Metabolism, vol. 5, no. 2, pp. 151–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. I. R. Lanza, D. K. Short, K. R. Short et al., “Endurance exercise as a countermeasure for aging,” Diabetes, vol. 57, no. 11, pp. 2933–2942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Someya, W. Yu, W. C. Hallows et al., “Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction,” Cell, vol. 143, no. 5, pp. 802–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. X. Kong, R. Wang, Y. Xue et al., “Sirtuin 3, a new target of PGC-1α, plays an important role in the suppression of ROS and mitochondrial biogenesis,” PLoS ONE, vol. 5, no. 7, Article ID e11707, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. D. A. Hood, “Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle,” Journal of Applied Physiology, vol. 90, no. 3, pp. 1137–1157, 2001. View at Google Scholar · View at Scopus
  76. A. M. Cogswell, R. J. Stevens, and D. A. Hood, “Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions,” American Journal of Physiology, vol. 264, no. 2, part 1, pp. C383–C389, 1993. View at Google Scholar · View at Scopus
  77. V. B. Ritov, E. V. Menshikova, J. He, R. E. Ferrell, B. H. Goodpaster, and D. E. Kelley, “Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes,” Diabetes, vol. 54, no. 1, pp. 8–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Takahashi and D. A. Hood, “Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria: differential import regulation in distinct subcellular regions,” Journal of Biological Chemistry, vol. 271, no. 44, pp. 27285–27291, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. P. J. Adhihetty, V. Ljubicic, K. J. Menzies, and D. A. Hood, “Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli,” American Journal of Physiology, vol. 289, no. 4, pp. C994–C1001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Chen and D. C. Chan, “Physiological functions of mitochondrial fusion,” Annals of the New York Academy of Sciences, vol. 1201, pp. 21–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Bo, Y. Zhang, and L. L. Ji, “Redefining the role of mitochondria in exercise: a dynamic remodeling,” Annals of the New York Academy of Sciences, vol. 1201, pp. 121–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Otera and K. Mihara, “Molecular mechanisms and physiologic functions of mitochondrial dynamics,” Journal of Biochemistry, vol. 149, no. 3, pp. 241–251, 2011. View at Publisher · View at Google Scholar
  83. D. Bach, S. Pich, F. X. Soriano et al., “Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: a novel regulatory mechanism altered in obesity,” Journal of Biological Chemistry, vol. 278, no. 19, pp. 17190–17197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Liesa, M. Palacín, and A. Zorzano, “Mitochondrial dynamics in mammalian health and disease,” Physiological Reviews, vol. 89, no. 3, pp. 799–845, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Züchner, I. V. Mersiyanova, M. Muglia et al., “Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A,” Nature Genetics, vol. 36, no. 5, pp. 449–451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. H. M. E. Bienfait, F. Baas, J. H. T. M. Koelman et al., “Phenotype of Charcot-Marie-Tooth disease type 2,” Neurology, vol. 68, no. 20, pp. 1658–1667, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Alexander, M. Votruba, U. E. A. Pesch et al., “OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28,” Nature Genetics, vol. 26, no. 2, pp. 211–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Delettre, J. M. Griffoin, J. Kaplan et al., “Mutation spectrum and splicing variants in the OPA1 gene,” Human Genetics, vol. 109, no. 6, pp. 584–591, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. D. Arnoult, A. Grodet, Y. J. Lee, J. Estaquier, and C. Blackstone, “Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation,” Journal of Biological Chemistry, vol. 280, no. 42, pp. 35742–35750, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Duvezin-Caubet, R. Jagasia, J. Wagener et al., “Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology,” Journal of Biological Chemistry, vol. 281, no. 49, pp. 37972–37979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Chen, M. Vermulst, Y. E. Wang et al., “Mitochondrial fusion is required for mtdna stability in skeletal muscle and tolerance of mtDNA mutations,” Cell, vol. 141, no. 2, pp. 280–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Chen, A. Chomyn, and D. C. Chan, “Disruption of fusion results in mitochondrial heterogeneity and dysfunction,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26185–26192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. P. A. Parone, S. Da Druz, D. Tondera et al., “Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA,” PLoS ONE, vol. 3, no. 9, Article ID e3257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Malena, E. Loro, M. Di Re, I. J. Holt, and L. Vergani, “Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA,” Human Molecular Genetics, vol. 18, no. 18, pp. 3407–3416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Cartoni, B. Léger, M. B. Hock et al., “Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise,” Journal of Physiology, vol. 567, part 1, pp. 349–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Ding, N. Jiang, H. Liu et al., “Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 250–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Garnier, D. Fortin, J. Zoll et al., “Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle,” The FASEB Journal, vol. 19, no. 1, pp. 43–52, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. D. Bach, D. Naon, S. Pich et al., “Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor α and interleukin-6,” Diabetes, vol. 54, no. 9, pp. 2685–2693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. D. E. Kelley, J. He, E. V. Menshikova, and V. B. Ritov, “Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes,” Diabetes, vol. 51, no. 10, pp. 2944–2950, 2002. View at Google Scholar · View at Scopus
  100. S. Pich, D. Bach, P. Briones et al., “The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system,” Human Molecular Genetics, vol. 14, no. 11, pp. 1405–1415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Mingrone, M. Manco, M. Calvani, M. Castagneto, D. Naon, and A. Zorzano, “Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity?” Diabetologia, vol. 48, no. 10, pp. 2108–2114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. E. Nisoli, C. Tonello, A. Cardile et al., “Cell biology: calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS,” Science, vol. 310, no. 5746, pp. 314–317, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. F. X. Soriano, M. Liesa, D. Bach, D. C. Chan, M. Palacín, and A. Zorzano, “Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-γ coactivator-1α, estrogen-related receptor-α, and mitofusin 2,” Diabetes, vol. 55, no. 6, pp. 1783–1791, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. G. Twig, A. Elorza, A. J. A. Molina et al., “Fission and selective fusion govern mitochondrial segregation and elimination by autophagy,” The EMBO Journal, vol. 27, no. 2, pp. 433–446, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Zanna, A. Ghelli, A. M. Porcelli et al., “OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion,” Brain, vol. 131, part 2, pp. 352–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. P. J. Adhihetty, M. F. N. O'Leary, and D. A. Hood, “Mitochondria in skeletal muscle: adaptable rheostats of apoptotic susceptibility,” Exercise and Sport Sciences Reviews, vol. 36, no. 3, pp. 116–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Yu, J. L. Robotham, and Y. Yoon, “Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 8, pp. 2653–2658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Delivani, C. Adrain, R. C. Taylor, P. J. Duriez, and S. J. Martin, “Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics,” Molecular Cell, vol. 21, no. 6, pp. 761–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Brooks, Q. Wei, L. Feng et al., “Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 28, pp. 11649–11654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. D. I. James, P. A. Parone, Y. Mattenberger, and J. C. Martinou, “hFis1, a novel component of the mammalian mitochondrial fission machinery,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 36373–36379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. S. B. Berman, Y. B. Chen, B. Qi et al., “Bcl-xL increases mitochondrial fission, fusion, and biomass in neurons,” Journal of Cell Biology, vol. 184, no. 5, pp. 707–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Bonnard, A. Durand, S. Peyrol et al., “Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 789–800, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Nishikawa, D. Edelstein, X. L. Du et al., “Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage,” Nature, vol. 404, no. 6779, pp. 787–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Liot, B. Bossy, S. Lubitz, Y. Kushnareva, N. Sejbuk, and E. Bossy-Wetzel, “Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway,” Cell Death and Differentiation, vol. 16, no. 6, pp. 899–909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Jendrach, S. Mai, S. Pohl, M. Vöth, and J. Bereiter-Hahn, “Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress,” Mitochondrion, vol. 8, no. 4, pp. 293–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. R. N. Baumgartner, “Body composition in healthy aging,” Annals of the New York Academy of Sciences, vol. 904, pp. 437–448, 2000. View at Google Scholar · View at Scopus
  117. M. Zamboni, G. Mazzali, F. Fantin, A. Rossi, and V. Di Francesco, “Sarcopenic obesity: a new category of obesity in the elderly,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 18, no. 5, pp. 388–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. B. Sishi, B. Loos, B. Ellis, W. Smith, E. F. Du Toit, and A. M. Engelbrecht, “Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model,” Experimental Physiology, vol. 96, no. 2, pp. 179–193, 2011. View at Publisher · View at Google Scholar
  119. R. T. Hepple, “Why eating less keeps mitochondria working in aged skeletal muscle,” Exercise and Sport Sciences Reviews, vol. 37, no. 1, pp. 23–28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Sandri, “Autophagy in skeletal muscle,” FEBS Letters, vol. 584, no. 7, pp. 1411–1416, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. L. C. Gomes and L. Scorrano, “High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy,” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 860–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Terman, “The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes,” Gerontology, vol. 41, supplement 2, pp. 319–326, 1995. View at Google Scholar · View at Scopus
  123. A. Donati, G. Cavallini, C. Paradiso et al., “Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions,” Journals of Gerontology A, vol. 56, no. 9, pp. B375–B383, 2001. View at Google Scholar · View at Scopus
  124. S. E. Wohlgemuth, A. Y. Seo, E. Marzetti, H. A. Lees, and C. Leeuwenburgh, “Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise,” Experimental Gerontology, vol. 45, no. 2, pp. 138–148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. E. Masiero and M. Sandri, “Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles,” Autophagy, vol. 6, no. 2, pp. 307–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. H. S. Jung and M. S. Lee, “Role of autophagy in diabetes and mitochondria,” Annals of the New York Academy of Sciences, vol. 1201, pp. 79–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. D. E. Kelley and J. A. Simoneau, “Impaired free fatty acid utilization by skeletal muscle in non-insulin- dependent diabetes mellitus,” Journal of Clinical Investigation, vol. 94, no. 6, pp. 2349–2356, 1994. View at Google Scholar · View at Scopus
  128. J. A. Simoneau and D. E. Kelley, “Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM,” Journal of Applied Physiology, vol. 83, no. 1, pp. 166–171, 1997. View at Google Scholar · View at Scopus
  129. E. J. Henriksen, “Invited review: effects of acute exercise and exercise training on insulin resistance,” Journal of Applied Physiology, vol. 93, no. 2, pp. 788–796, 2002. View at Google Scholar · View at Scopus
  130. A. Sriwijitkamol, D. K. Coletta, E. Wajcberg et al., “Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study,” Diabetes, vol. 56, no. 3, pp. 836–848, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. F. G. S. Toledo, E. V. Menshikova, V. B. Ritov et al., “Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes,” Diabetes, vol. 56, no. 8, pp. 2142–2147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. M. I. Herńandez-Alvarez, H. Thabit, N. Burns et al., “Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1α/mitofusin-2 regulatory pathway in response to physical activity,” Diabetes Care, vol. 33, no. 3, pp. 645–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. A. V. Greco, G. Mingrone, A. Giancaterini et al., “Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion,” Diabetes, vol. 51, no. 1, pp. 144–151, 2002. View at Google Scholar · View at Scopus
  134. P. Malenfant, A. Tremblay, É. Doucet, P. Imbeault, J. A. Simoneau, and D. R. Joanisse, “Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training,” American Journal of Physiology, vol. 280, no. 4, pp. E632–E639, 2001. View at Google Scholar · View at Scopus
  135. V. B. Schrauwen-Hinderling, P. Schrauwen, M. K. C. Hesselink et al., “The increase in intramyocellular lipid content is a very early response to training,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1610–1616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. J. He, B. H. Goodpaster, and D. E. Kelley, “Effects of weight loss and physical activity on muscle lipid content and droplet size,” Obesity Research, vol. 12, no. 5, pp. 761–769, 2004. View at Google Scholar · View at Scopus
  137. H. Hoppeler, H. Howald, K. Conley et al., “Endurance training in humans: aerobic capacity and structure of skeletal muscle,” Journal of Applied Physiology, vol. 59, no. 2, pp. 320–327, 1985. View at Google Scholar · View at Scopus
  138. B. H. Goodpaster, J. He, S. Watkins, and D. E. Kelley, “Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5755–5761, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. C. M. McCay, M. F. Crowell, and L. A. Maynard, “The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935,” Nutrition, vol. 5, no. 3, pp. 155–171, 1989. View at Google Scholar · View at Scopus
  140. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. R. Gredilla, A. Sanz, M. Lopez-Torres, and G. Barja, “Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart,” The FASEB Journal, vol. 15, no. 9, pp. 1589–1591, 2001. View at Google Scholar · View at Scopus
  142. S. J. Lin, M. Kaeberlein, A. A. Andalis et al., “Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration,” Nature, vol. 418, no. 6895, pp. 344–348, 2002. View at Publisher · View at Google Scholar · View at Scopus
  143. E. Morselli, M. C. Maiuri, M. Markaki et al., “The life span-prolonging effect of sirtuin-1 is mediated by autophagy,” Autophagy, vol. 6, no. 1, pp. 186–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. N. A. Bishop and L. Guarente, “Two neurons mediate diet-restriction-induced longevity in C. elegans,” Nature, vol. 447, no. 7144, pp. 545–549, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. M. D. Bruss, C. F. Khambatta, M. A. Ruby, I. Aggarwal, and M. K. Hellerstein, “Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates,” American Journal of Physiology, vol. 298, no. 1, pp. E108–E116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. A. E. Civitarese, S. Carling, L. K. Heilbronn et al., “Calorie restriction increases muscle mitochondrial biogenesis in healthy humans,” PLoS Medicine, vol. 4, no. 3, pp. 485–494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Hammer, M. Snel, H. J. Lamb et al., “Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function,” Journal of the American College of Cardiology, vol. 52, no. 12, pp. 1006–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. K. F. Petersen, M. Krssak, S. Inzucchi, G. W. Cline, S. Dufour, and G. I. Shulman, “Mechanism of troglitazone action in type 2 diabetes,” Diabetes, vol. 49, no. 5, pp. 827–831, 2000. View at Google Scholar · View at Scopus
  149. M. Mensink, M. K. C. Hesselink, A. P. Russell, G. Schaart, J. P. Sels, and P. Schrauwen, “Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1α and PPARβ/δ gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus,” International Journal of Obesity, vol. 31, no. 8, pp. 1302–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Bastin, F. Aubey, A. Rötig, A. Munnich, and F. Djouadi, “Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1433–1441, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. J. A. Baur, K. J. Pearson, N. L. Price et al., “Resveratrol improves health and survival of mice on a high-calorie diet,” Nature, vol. 444, no. 7117, pp. 337–342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Lagouge, C. Argmann, Z. Gerhart-Hines et al., “Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α,” Cell, vol. 127, no. 6, pp. 1109–1122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. J. C. Milne, P. D. Lambert, S. Schenk et al., “Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes,” Nature, vol. 450, no. 7170, pp. 712–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  154. C. Cantó and J. Auwerx, “PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure,” Current Opinion in Lipidology, vol. 20, no. 2, pp. 98–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. I. Irrcher, V. Ljubicic, A. F. Kirwan, and D. A. Hood, “AMP-activated protein kinase-regulated activation of the PGC-1alpha promoter in skeletal muscle cells,” PLoS ONE, vol. 3, no. 10, Article ID e3614, 2008. View at Google Scholar · View at Scopus
  156. X. Yu, S. McCorkle, M. Wang et al., “Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition,” Diabetologia, vol. 47, no. 11, pp. 2012–2021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Pold, L. S. Jensen, N. Jessen et al., “Long-term AICAR administration and exercise prevents diabetes in ZDF rats,” Diabetes, vol. 54, no. 4, pp. 928–934, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. R. A. DeFronzo, “Bromocriptine: a sympatholytic, D2-dopamine agonist for the treatment of type 2 diabetes,” Diabetes Care, vol. 34, no. 4, pp. 789–794, 2011. View at Publisher · View at Google Scholar