Table of Contents Author Guidelines Submit a Manuscript
Experimental Diabetes Research
Volume 2012, Article ID 847246, 8 pages
http://dx.doi.org/10.1155/2012/847246
Research Article

Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

1Department of Occupational and Environment Health, School of Public Health, Nantong University, Nantong 226019, China
2Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China

Received 8 February 2012; Accepted 14 May 2012

Academic Editor: Pietro Galassetti

Copyright © 2012 Xiaoke Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Yach, D. Stuckler, and K. D. Brownell, “Epidemiologic and economic consequences of the global epidemics of obesity and diabetes,” Nature Medicine, vol. 12, no. 1, pp. 62–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Wang, E. B. Rimm, M. J. Stampfer, W. C. Willett, and F. B. Hu, “Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men,” American Journal of Clinical Nutrition, vol. 81, no. 3, pp. 555–563, 2005. View at Google Scholar · View at Scopus
  3. J. Ärnlöv, E. Ingelsson, J. Sundström, and L. Lind, “Impact of body mass index and the metabolic syndrome on the risk of cardiovascular disease and death in middle-aged men,” Circulation, vol. 121, no. 2, pp. 230–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. Bray and B. M. Popkin, “Dietary fat intake does affect obesity,” American Journal of Clinical Nutrition, vol. 68, no. 6, pp. 1157–1173, 1998. View at Google Scholar · View at Scopus
  5. B. E. Levin and R. E. Keesey, “Defense of differfing body weight set points in diet-induced obese and resistant rats,” American Journal of Physiology, vol. 274, no. 2, pp. R412–R419, 1998. View at Google Scholar · View at Scopus
  6. C. Bouchard and A. Tremblay, “Genetic influences on the response of body fat and fat distribution to positive and negative energy balances in human identical twins,” Journal of Nutrition, vol. 127, no. 5, supplement, pp. 943S–947S, 1997. View at Google Scholar · View at Scopus
  7. B. E. Levin, J. Triscari, S. Hogan, and A. C. Sullivan, “Resistance to diet-induced obesity: food intake, pancreatic sympathetic tone, and insulin,” American Journal of Physiology, vol. 252, no. 3, pp. R471–R478, 1987. View at Google Scholar · View at Scopus
  8. J. P. Bastard, M. Maachi, C. Lagathu et al., “Recent advances in the relationship between obesity, inflammation, and insulin resistance,” European Cytokine Network, vol. 17, no. 1, pp. 4–12, 2006. View at Google Scholar · View at Scopus
  9. C. T. De Souza, E. P. Araujo, S. Bordin et al., “Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus,” Endocrinology, vol. 146, no. 10, pp. 4192–4199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. C. Carvalheira, E. B. Ribeiro, E. P. Araújo et al., “Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats,” Diabetologia, vol. 46, no. 12, pp. 1629–1640, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. Howard, B. J. Cave, L. J. Oksanen, I. Tzameli, C. Bjoørbæk, and J. S. Flier, “Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3,” Nature Medicine, vol. 10, no. 7, pp. 734–738, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004. View at Google Scholar · View at Scopus
  14. M. S. Hayden and S. Ghosh, “Shared principles in NF-κB signaling,” Cell, vol. 132, no. 3, pp. 344–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Milanski, G. Degasperi, A. Coope et al., “Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity,” Journal of Neuroscience, vol. 29, no. 2, pp. 359–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. L. Tsukumo, M. A. Carvalho-Filho, J. B. C. Carvalheira et al., “Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance,” Diabetes, vol. 56, no. 8, pp. 1986–1998, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Zhang, G. Zhang, H. Zhang, M. Karin, H. Bai, and D. Cai, “Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity,” Cell, vol. 135, no. 1, pp. 61–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. A. Posey, D. J. Clegg, R. L. Printz et al., “Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet,” American Journal of Physiology, vol. 296, no. 5, pp. E1003–E1012, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Wang, N. Yang, S. Wu, L. Liu, X. Sun, and S. Nie, “Difference of NPY and its receptor gene expressions between obesity and obesity-resistant rats in response to high-fat diet,” Hormone and Metabolic Research, vol. 39, no. 4, pp. 262–267, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. S. Allen, T. E. Adrian, and J. M. Allen, “Neuropeptide Y distribution in the rat brain,” Science, vol. 221, no. 4613, pp. 872–879, 1983. View at Google Scholar · View at Scopus
  21. B. Beck, “Intracerebroventricular injection of proinsulin C-peptide does not influence food consumption in male long-evans rats,” Hormone and Metabolic Research, vol. 38, no. 5, pp. 314–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Larionov, A. Krause, and W. R. Miller, “A standard curve based method for relative real time PCR data processing,” BMC Bioinformatics, vol. 6, article 62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Perusse and C. Bouchard, “Gene-diet interactions in obesity,” American Journal of Clinical Nutrition, vol. 72, no. 5, supplement, pp. 1285S–1290S, 2000. View at Google Scholar · View at Scopus
  24. B. E. Levin, J. Triscari, and A. C. Sullivan, “Metabolic features of diet-induced obesity without hyperphagia in young rats,” American Journal of Physiology, vol. 251, no. 3, pp. R433–R440, 1986. View at Google Scholar · View at Scopus
  25. B. E. Levin, S. Hogan, and A. C. Sullivan, “Initiation and perpetuation of obesity and obesity resistance in rats,” American Journal of Physiology, vol. 256, no. 3, pp. R766–R771, 1989. View at Google Scholar · View at Scopus
  26. M. R. Ricci and B. E. Levin, “Ontogeny of diet-induced obesity in selectively bred sprague-dawley rats,” American Journal of Physiology, vol. 285, no. 3, pp. R610–R618, 2003. View at Google Scholar · View at Scopus
  27. L. Sondergaard, “Homology between the mammalian liver and Drosophila fat body,” Trends in Genetics, vol. 9, no. 6, p. 193, 1993. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Medzhitov, “Toll-like receptors and innate immunity,” Nature Reviews Immunology, vol. 1, no. 2, pp. 135–145, 2001. View at Google Scholar · View at Scopus
  29. M. B. Fessler, L. L. Rudel, and J. M. Brown, “Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome,” Current Opinion in Lipidology, vol. 20, no. 5, pp. 379–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Kendall, D. A. Levitsky, B. J. Strupp, and L. Lissner, “Weight loss on a low-fat diet: consequence of the imprecision of the control of food intake in humans,” American Journal of Clinical Nutrition, vol. 53, no. 5, pp. 1124–1129, 1991. View at Google Scholar · View at Scopus
  31. H. Wang, L. H. Storlien, and X. F. Huang, “Effects of dietary fat types on body fatness, leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression,” American Journal of Physiology, vol. 282, no. 6, pp. E1352–E1359, 2002. View at Google Scholar · View at Scopus
  32. J. O. Hill, J. Dorton, M. N. Sykes, and M. Digirolamo, “Reversal of dietary obesity is influenced by its duration and severity,” International Journal of Obesity, vol. 13, no. 5, pp. 711–722, 1989. View at Google Scholar · View at Scopus
  33. P. J. Enriori, A. E. Evans, P. Sinnayah et al., “Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons,” Cell Metabolism, vol. 5, no. 3, pp. 181–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. X. F. Huang, X. Xin, P. McLennan, and L. Storlien, “Role of fat amount and type in ameliorating diet-induced obesity: insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression,” Diabetes, Obesity and Metabolism, vol. 6, no. 1, pp. 35–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. I. S. Lee, G. Shin, and R. Choue, “Shifts in diet from high fat to high carbohydrate improved levels of adipokines and pro-inflammatory cytokines in mice fed a high-fat diet,” Endocrine Journal, vol. 57, no. 1, pp. 39–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Kleinridders, D. Schenten, A. C. Könner et al., “MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity,” Cell Metabolism, vol. 10, no. 4, pp. 249–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. G. S. Hotamisligil, “Inflammation and metabolic disorders,” Nature, vol. 444, no. 7121, pp. 860–867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. G. S. Hotamisligil, “Endoplasmic reticulum stress and the inflammatory basis of metabolic disease,” Cell, vol. 140, no. 6, pp. 900–917, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. P. Arruda, M. Milanski, A. Coope et al., “Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion,” Endocrinology, vol. 152, no. 4, pp. 1314–1326, 2011. View at Publisher · View at Google Scholar · View at Scopus