Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 134395, 8 pages
http://dx.doi.org/10.1155/2013/134395
Research Article

The Role of Adrenomedullin in the Renal NADPH Oxidase and (Pro)renin in Diabetic Mice

1Department of Internal Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
2Division of Nephrology and Endocrinology, Department of Internal Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Received 4 February 2013; Accepted 25 June 2013

Academic Editor: Bernard Portha

Copyright © 2013 Michio Hayashi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Saito, H. Itoh, T.-H. Chun et al., “Coordinate regulation of endothelin and adrenomedullin secretion by oxidative stress in endothelial cells,” American Journal of Physiology, vol. 281, no. 3, pp. H1364–H1371, 2001. View at Google Scholar · View at Scopus
  2. T. Nishikimi, Y. Mori, N. Kobayashi et al., “Renoprotective effect of chronic adrenomedullin infusion in Dahl salt-sensitive rats,” Hypertension, vol. 39, no. 6, pp. 1077–1082, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Nishimatsu, Y. Hirata, T. Shindo et al., “Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury: studies on transgenic/knockout mice of adrenomedullin gene,” Circulation Research, vol. 90, no. 6, pp. 657–663, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Shimosawa, Y. Shibagaki, K. Ishibashi et al., “Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage,” Circulation, vol. 105, no. 1, pp. 106–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tsuruda and J. C. Burnett Jr., “Adrenomedullin: an autocrine/paracrine factor for cardiorenal protection,” Circulation Research, vol. 90, no. 6, pp. 625–627, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Kawai, K. Ando, A. Tojo et al., “Endogenous adrenomedullin protects against vascular response to injury in mice,” Circulation, vol. 109, no. 9, pp. 1147–1153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Hayashi, T. Shimosawa, M.-A. Isaka, S. Yamada, R. Fujita, and T. Fujita, “Plasma adrenomedullin in diabetes,” The Lancet, vol. 350, no. 9089, pp. 1449–1450, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hayashi, T. Shimosawa, and T. Fujita, “Hyperglycemia increases vascular adrenomedullin expression,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 453–456, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Hiragushi, J. Wada, J. Eguchi et al., “The role of adrenomedullin and receptors in glomerular hyperfiltration in streptozotocin-induced diabetic rats,” Kidney International, vol. 65, no. 2, pp. 540–550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. C. G. Schnackenberg and C. S. Wilcox, “The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes,” Kidney International, vol. 59, no. 5, pp. 1859–1864, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Nassar, B. Kadery, C. Lotan, N. Da'as, Y. Kleinman, and A. Haj-Yehia, “Effects of the superoxide dismutase-mimetic compound tempol on endothelial dysfunction in streptozotocin-induced diabetic rats,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 111–118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Onozato, A. Tojo, A. Goto, T. Fujita, and C. S. Wilcox, “Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB,” Kidney International, vol. 61, no. 1, pp. 186–194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. W. Brands, T. D. Bell, and B. Gibson, “Nitric oxide may prevent hypertension early in diabetes by counteracting renal actions of superoxide,” Hypertension, vol. 43, no. 1, pp. 57–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Onozato, A. Tojo, A. Goto, and T. Fujita, “Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet,” Kidney International, vol. 65, no. 3, pp. 951–960, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Asaba, A. Tojo, M. L. Onozato et al., “Effects of NADPH oxidase inhibitor in diabetic nephropathy,” Kidney International, vol. 67, no. 5, pp. 1890–1898, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Tojo, M. L. Onozato, N. Kobayashi, A. Goto, H. Matsuoka, and T. Fujita, “Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure,” Hypertension, vol. 40, no. 6, pp. 834–839, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Tojo, M. L. Onozato, S. Fukuda, K. Asaba, K. Kimura, and T. Fujita, “Nitric oxide generated by nNOS in the macula densa regulates the afferent arteriolar diameter in rat kidney,” Medical Electron Microscopy, vol. 37, no. 4, pp. 236–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Tojo, K. Kimura, S. Nanba, H. Matsuoka, and T. Sugimoto, “Variations in renal arteriolar diameter in deoxycorticosterone acetate-salt hypertensive rats. A microvascular cast study,” Virchows Archiv A, vol. 417, no. 5, pp. 389–393, 1990. View at Google Scholar · View at Scopus
  20. M. L. Onozato, A. Tojo, J. Leiper, T. Fujita, F. Palm, and C. S. Wilcox, “Expression of NG,NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney effects of angiotensin II receptor blockers,” Diabetes, vol. 57, no. 1, pp. 172–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ishimitsu, K. Tsukada, J. Minami et al., “Microsatellite DNA polymorphism of human adrenomedullin gene in type 2 diabetic patients with renal failure,” Kidney International, vol. 63, no. 6, pp. 2230–2235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. T.-H. Chun, H. Itoh, T. Saito et al., “Oxidative stress augments secretion of endothelium-derived relaxing peptides, C-type natriuretic peptide and adrenomedullin,” Journal of Hypertension, vol. 18, no. 5, pp. 575–580, 2000. View at Google Scholar · View at Scopus
  23. F. Yoshihara, T. Horio, T. Nishikimi, H. Matsuo, and K. Kangawa, “Possible involvement of oxidative stress in hypoxia-induced adrenomedullin secretion in cultured rat cardiomyocytes,” European Journal of Pharmacology, vol. 436, no. 1-2, pp. 1–6, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Katsuki, Y. Sumida, H. Urakawa et al., “Increased oxidative stress is associated with elevated plasma levels of adrenomedullin in hypertensive patients with type 2 diabetes,” Diabetes Care, vol. 26, no. 5, pp. 1642–1643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kitada, D. Koya, T. Sugimoto et al., “Translocation of glomerular p47phox and p67phox by protein kinase C-β activation is required for oxidative stress in diabetic nephropathy,” Diabetes, vol. 52, no. 10, pp. 2603–2614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw, and R. W. Alexander, “Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells,” Circulation Research, vol. 74, no. 6, pp. 1141–1148, 1994. View at Google Scholar · View at Scopus
  27. P. N. Seshiah, D. S. Weber, P. Rocic, L. Valppu, Y. Taniyama, and K. K. Griendling, “Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators,” Circulation Research, vol. 91, no. 5, pp. 406–413, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Gulmann, S. Rudberg, G. Nyberg, and R. Østerby, “Enlargement of the juxtaglomerular apparatus in insulin-dependent diabetes mellitus patients with microalbuminuria,” Virchows Archiv, vol. 433, no. 1, pp. 63–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Gulmann, R. Østerby, H.-J. Bangstad, and S. Rudberg, “The juxtaglomerular apparatus in young type-1 diabetic patients with microalbuminuria: effect of antihypertensive treatment,” Virchows Archiv, vol. 438, no. 6, pp. 618–623, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Ritz and R. Dikow, “Angiontensin receptor antagonists in patients with nephropathy due to type 2 diabetes,” Annals of Medicine, vol. 34, no. 7-8, pp. 507–513, 2002. View at Google Scholar · View at Scopus
  31. R. E. Gilbert, H. Krum, J. Wilkinson-Berka, and D. J. Kelly, “The renin-angiotensin system and the long-term complications of diabetes: pathophysiological and therapeutic considerations,” Diabetic Medicine, vol. 20, no. 8, pp. 607–621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Mezzano, A. Droguett, M. E. Burgos et al., “Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy,” Kidney International, Supplement, vol. 64, no. 86, pp. S64–S70, 2003. View at Google Scholar · View at Scopus
  33. R. Moriya, J. C. Manivel, and M. Mauer, “Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in type 1 diabetic patients,” Diabetologia, vol. 47, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Charles, J. G. Lainchbury, M. G. Nicholls, M. T. Rademaker, A. M. Richards, and R. W. Troughton, “Adrenomedullin and the renin-angiotensin-aldosterone system,” Regulatory Peptides, vol. 112, no. 1–3, pp. 41–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. B. L. Jensen, B. K. Krämer, and A. Kurtz, “Adrenomedullin stimulates renin release and renin mRNA in mouse juxtaglomerular granular cells,” Hypertension, vol. 29, no. 5, pp. 1148–1155, 1997. View at Google Scholar · View at Scopus