Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 254529, 8 pages
http://dx.doi.org/10.1155/2013/254529
Research Article

Outcome of Acute Renal Injury in Diabetic Mice with Experimental Endotoxemia: Role of Hypoxia-Inducible Factor-1α

1Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
2Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
3Department of Clinical Chemistry University Hospital “Príncipe de Asturias”, University of Alcalá, Alcalá de Henares, Spain
4Cell Response to Ischemia Laboratory, Department of Systems Disorders and Cancer, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain

Received 15 January 2013; Accepted 5 July 2013

Academic Editor: Shahidul Islam

Copyright © 2013 A. Ortega et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Elliott, D. C. Houghton, and D. N. Gilbert, “Experimental gentamicin nephrotoxicity: effect of streptozotocin-induced diabetes,” Journal of Pharmacology and Experimental Therapeutics, vol. 233, no. 1, pp. 264–270, 1985. View at Google Scholar · View at Scopus
  2. K. Hamilton, E. J. Eaton, H. O. Garland, and S. Old, “Effect of experimental diabetes mellitus on gentamicin-induced acute renal functional changes in the anaesthetized rat,” Clinical and Experimental Pharmacology and Physiology, vol. 25, no. 3-4, pp. 231–235, 1998. View at Google Scholar · View at Scopus
  3. A. V. Dnyanmote, S. P. Sawant, E. A. Lock, J. R. Latendresse, A. A. Warbritton, and H. M. Mehendale, “Diabetic mice are protected from normally lethal nephrotoxicity of S-1,2-dichlorovinyl-L-cysteine (DCVC): role of nephrogenic tissue repair,” Toxicology and Applied Pharmacology, vol. 211, no. 2, pp. 133–147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. R. Rudnick, S. Goldfarb, L. Wexler et al., “Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial,” Kidney International, vol. 47, no. 1, pp. 254–261, 1995. View at Google Scholar · View at Scopus
  5. P. A. McCullough, R. Wolyn, L. L. Rocher, R. N. Levin, and W. W. O'Neill, “Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality,” American Journal of Medicine, vol. 103, no. 5, pp. 368–375, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. C. V. Thakar, S. Arrigain, S. Worley, J.-P. Yared, and E. P. Paganini, “A clinical score to predict acute renal failure after cardiac surgery,” Journal of the American Society of Nephrology, vol. 16, no. 1, pp. 162–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Rosner and M. D. Okusa, “Acute kidney injury associated with cardiac surgery,” Clinical Journal of the American Society of Nephrology, vol. 1, no. 1, pp. 19–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. D. Griffin, E. J. Bergstralh, and T. S. Larson, “Renal papillary necrosis a sixteen-year clinical experience,” Journal of the American Society of Nephrology, vol. 6, no. 2, pp. 248–256, 1995. View at Google Scholar · View at Scopus
  9. G. L. Semenza, “Signal transduction to hypoxia-inducible factor 1,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 993–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Kanellis, S. Fraser, M. Katerelos, and D. A. Power, “Vascular endothelial growth factor is a survival factor for renal tubular epithelial cells,” American Journal of Physiology, vol. 278, no. 6, pp. F905–F915, 2000. View at Google Scholar · View at Scopus
  11. P. Jaakkola, D. R. Mole, Y.-M. Tian et al., “Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation,” Science, vol. 292, no. 5516, pp. 468–472, 2001. View at Google Scholar · View at Scopus
  12. M. Ivan, K. Kondo, H. Yang et al., “HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing,” Science, vol. 292, no. 5516, pp. 464–468, 2001. View at Google Scholar · View at Scopus
  13. S. Kaluz, M. Kaluzová, and E. J. Stanbridge, “Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element,” Clinica Chimica Acta, vol. 395, no. 1-2, pp. 6–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Zhou and B. Brune, “Cytokines and hormones in the regulation of hypoxia inducible factor-1alpha (HIF-1alpha),” Cardiovascular & Hematological Agents in Medicinal Chemistry, vol. 4, no. 3, pp. 189–197, 2006. View at Google Scholar
  15. I. R. Botusan, V. G. Sunkari, O. Savu et al., “Stabilization of HIF-1α is critical to improve wound healing in diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19426–19431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Nangaku, R. Inagi, T. Miyata, and T. Fujita, “Hypoxia and hypoxia-inducible factor in renal disease,” Nephron, vol. 110, no. 1, article e1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. Tisher and T. H. Hostetter, “Diabetic nephropathy,” in Renal Pathology, C. C. Tisher and B. M. Brenner, Eds., vol. 2, JB Lippincott, Philadelphia, Pa, USA, 1994. View at Google Scholar
  18. C. E. Guthrow, M. A. Morris, and J. F. Day, “Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4258–4261, 1979. View at Google Scholar · View at Scopus
  19. A. Izquierdo, P. López-Luna, A. Ortega et al., “The parathyroid hormone-related protein system and diabetic nephropathy outcome in streptozotocin-induced diabetes,” Kidney International, vol. 69, no. 12, pp. 2171–2178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. B. Fernandez-Martinez, M. I. Jimenez, I. S. Hernandez et al., “Mutual regulation of hypoxic and retinoic acid related signalling in tubular proximal cells,” International Journal of Biochemistry & Cell Biology, vol. 43, no. 8, pp. 1198–1207, 2011. View at Google Scholar
  21. A. A. Sharfuddin and B. A. Molitoris, “Pathophysiology of ischemic acute kidney injury,” Nature Reviews Nephrology, vol. 7, no. 4, pp. 189–200, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Treins, S. Giorgetti-Peraldi, J. Murdaca, and E. Van Obberghen, “Regulation of vascular endothelial growth factor expression by advanced glycation end products,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 43836–43841, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. E. Guthrow, M. A. Morris, and J. F. Day, “Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4258–4261, 1979. View at Google Scholar · View at Scopus
  24. M. P. Cohen and F. N. Ziyadeh, “Role of Amadori-modified nonenzymatically glycated serum proteins in the pathogenesis of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 7, no. 2, pp. 183–190, 1996. View at Google Scholar · View at Scopus
  25. Y. Zhang, Y. Shi, Y. Liu et al., “Growth pattern switch of renal cells and expression of cell cycle related proteins at the early stage of diabetic nephropathy,” Biochemical and Biophysical Research Communications, vol. 363, no. 1, pp. 159–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. V. Griffin and S. J. Shankland, “Renal hyperplasia and hypertrophy: role of cell cylce regulatory proteins,” in The Kidney Physiology and Pathophysiology, R. J. Alpern and S. C. Hebert, Eds., chapter 27, pp. 723–742, New York, NY, USA, 2008. View at Google Scholar
  27. R. J. Baines and N. J. Brunskill, “Tubular toxicity of proteinuria,” Nature Reviews Nephrology, vol. 7, no. 3, pp. 177–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Thiel, C. C. Caldwell, S. Kreth et al., “Targeted deletion of HIF-1α gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival,” PLoS ONE, vol. 2, no. 9, article e853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Ohtomo, M. Nangaku, Y. Izuhara, S. Takizawa, C. V. Y. D. Strihou, and T. Miyata, “Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model,” Nephrology Dialysis Transplantation, vol. 23, no. 4, pp. 1166–1172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Conde, L. Alegre, I. Blanco-Sánchez et al., “Hypoxia inducible factor 1-alpha (hif-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival,” PLoS ONE, vol. 7, no. 3, Article ID e33258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. E. C. Leonard, J. L. Friedrich, and D. P. Basile, “VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury,” American Journal of Physiology, vol. 295, no. 6, pp. F1648–F1657, 2008. View at Publisher · View at Google Scholar · View at Scopus