Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2013, Article ID 473575, 9 pages
http://dx.doi.org/10.1155/2013/473575
Review Article

Mild Diabetes Models and Their Maternal-Fetal Repercussions

Laboratory of Experimental Research on Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Botucatu Medical School, Universidade Estadual Paulista (Unesp), 18618-970 Botucatu, SP, Brazil

Received 4 January 2013; Revised 10 June 2013; Accepted 11 June 2013

Academic Editor: Daisuke Koya

Copyright © 2013 D. C. Damasceno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Diabetes Association, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 33, supplement 1, pp. S62–S69, 2010. View at Google Scholar
  2. K. Pechhold, K. Koczwara, X. Zhu et al., “Blood glucose levels regulate pancreatic β-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice,” PLoS ONE, vol. 4, no. 3, Article ID e4827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Scharfmann, V. Duvillie, M. Stetsyuk, G. Attali, G. Filhoulaud, and G. Guillemain, “β-cell development: the role of intercellular signals,” Diabetes, Obesity and Metabolism, vol. 10, no. 4, pp. 195–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Sociedade Brasileira de Diabetes, “Diagnóstico e classificação do diabetes mellitus e tratamento do diabetes mellitus tipo 2,” Consenso Brasileiro Sobre Diabetes, pp. 1–60, 2011. View at Google Scholar
  5. I. López-Soldado and E. Herrera, “Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring,” Experimental Diabesity Research, vol. 4, no. 2, pp. 107–118, 2003. View at Google Scholar · View at Scopus
  6. D. T. Ward, S. K. Yau, A. P. Mee et al., “Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes,” Journal of the American Society of Nephrology, vol. 12, no. 4, pp. 779–790, 2001. View at Google Scholar · View at Scopus
  7. U. J. Eriksson, L. A. H. Borg, J. Cederberg et al., “Pathogenesis of diabetes-induced congenital malformations,” Upsala Journal of Medical Sciences, vol. 105, no. 2, pp. 53–84, 2000. View at Google Scholar · View at Scopus
  8. U. J. Eriksson, J. Cederberg, and P. Wentzel, “Congenital malformations in offspring of diabetic mothers—animal and human studies,” Reviews in Endocrine and Metabolic Disorders, vol. 4, no. 1, pp. 79–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Damasceno, G. T. Volpato, I. M. Calderon, R. Aguilar, and M. V. C. Rudge, “Effect of Bauhinia forficata extract in diabetic pregnant rats: maternal repercussions,” Phytomedicine, vol. 11, no. 2-3, pp. 196–201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. V. C. Rudge, D. C. Damasceno, G. T. Volpato, F. C. G. Almeida, I. M. P. Calderon, and I. P. Lemonica, “Effect of Ginkgo biloba on the reproductive outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats,” Brazilian Journal of Medical and Biological Research, vol. 40, no. 8, pp. 1095–1099, 2007. View at Google Scholar · View at Scopus
  11. G. T. Volpato, D. C. Damasceno, M. V. C. Rudge, C. R. Padovani, and I. M. P. Calderon, “Effect of Bauhinia forficata aqueous extract on the maternal-fetal outcome and oxidative stress biomarkers of streptozotocin-induced diabetic rats,” Journal of Ethnopharmacology, vol. 116, no. 1, pp. 131–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. da Silva Soares de Souza, P. H. O. Lima, Y. K. Sinzato, M. V. C. Rudge, O. C. M. Pereira, and D. C. Damasceno, “Effects of cigarette smoke exposure on pregnancy outcome and offspring of diabetic rats,” Reproductive BioMedicine Online, vol. 18, no. 4, pp. 562–567, 2009. View at Google Scholar · View at Scopus
  13. M. D. S. S. de Souza, Y. K. Sinzato, P. H. O. Lima, I. M. P. Calderon, M. V. C. Rudge, and D. C. Damasceno, “Oxidative stress status and lipid profiles of diabetic pregnant rats exposed to cigarette smoke,” Reproductive BioMedicine Online, vol. 20, no. 4, pp. 547–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Portha, C. Levacher, L. Picon, and G. Rosselin, “Diabetogenic effect of streptozotocin in the rat during the perinatal period,” Diabetes, vol. 23, no. 11, pp. 889–895, 1974. View at Google Scholar · View at Scopus
  15. K. Tsuji, T. Taminato, M. Usami et al., “Characteristic features of insulin secretion in the streptozotocin-induced NIDDM rat model,” Metabolism, vol. 37, no. 11, pp. 1040–1044, 1988. View at Google Scholar · View at Scopus
  16. H. Merzouk, S. Madani, D. C. Sari, J. Prost, M. Bouchenak, and J. Belleville, “Time course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes,” Clinical Science, vol. 98, no. 1, pp. 21–30, 2000. View at Google Scholar · View at Scopus
  17. Y. K. Sinzato, P. H. O. Lima, K. E. de Campos, A. C. I. Kiss, M. V. C. Rudge, and D. C. Damascene, “Neonatally-induced diabetes: lipid profile outcomes and oxidative stress status in adult rats,” Revista da Associacao Medica Brasileira, vol. 55, no. 4, pp. 384–388, 2009. View at Google Scholar · View at Scopus
  18. D. C. Damasceno, A. C. I. Kiss, Y. K. Sinzato et al., “Maternal-fetal outcome, lipid profile and oxidative stress of diabetic rats neonatally exposed to streptozotocin,” Experimental and Clinical Endocrinology and Diabetes, vol. 119, no. 7, pp. 408–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Jawerbaum and V. White, “Animal models in diabetes and pregnancy,” Endocrine Reviews, vol. 31, no. 5, pp. 680–701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Minami and S. Seino, “Regeneration of the pancreas,” Japanese Journal of Clinical Medicine, vol. 66, no. 5, pp. 926–931, 2008. View at Google Scholar · View at Scopus
  21. S. Bonner-Weir and G. C. Weir, “New sources of pancreatic β-cells,” Nature Biotechnology, vol. 23, no. 7, pp. 857–861, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. R. N. Wang, L. Bouwens, and G. Klöppel, “Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity,” Diabetologia, vol. 37, no. 11, pp. 1088–1096, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Bonner-Weir, D. F. Trent, R. N. Honey, and G. C. Weir, “Responses of neonatal rat islets to streptozotocin. Limited B-cell regeneration and hyperglycemia,” Diabetes, vol. 30, no. 1, pp. 64–69, 1981. View at Google Scholar · View at Scopus
  24. J. Movassat, C. Saulnier, and B. Portha, “Insulin administration enhances growth of the β-cell mass in streptozotocin-treated newborn rats,” Diabetes, vol. 46, no. 9, pp. 1445–1452, 1997. View at Google Scholar · View at Scopus
  25. S. Thyssen, E. Arany, and D. J. Hill, “Ontogeny of regeneration of β-cells in the neonatal rat after treatment with streptozotocin,” Endocrinology, vol. 147, no. 5, pp. 2346–2356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Nicholson, E. J. Arany, and D. J. Hill, “Changes in islet microvasculature following streptozotocin-induced β-cell loss and subsequent replacement in the neonatal rat,” Experimental Biology and Medicine, vol. 235, no. 2, pp. 189–198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. X.-D. Liang, Y.-Y. Guo, M. Sun et al., “Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic α-cells,” World Journal of Gastroenterology, vol. 17, no. 23, pp. 2812–2820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Jarrett, “Gestational diabetes: a non-entity?” British Medical Journal, vol. 306, no. 6869, pp. 37–38, 1993. View at Google Scholar · View at Scopus
  29. D. J. P. Barker, “Maternal nutrition, fetal nutrition, and disease in later life,” Nutrition, vol. 13, no. 9, pp. 807–813, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Kanaka-Gantenbein, “Fetal origins of adult diabetes,” Annals of the New York Academy of Sciences, vol. 1205, pp. 99–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Hogan and R. Tilly, “In vitro development of inner cell masses isolated immunosurgically from mouse blastocysts. II. Inner cell masses from 3.5- to 4.0-day p.c. blastocysts,” Journal of Embryology and Experimental Morphology, vol. 45, pp. 107–121, 1978. View at Google Scholar · View at Scopus
  32. N. Hillman, M. I. Sherman, and C. Graham, “The effect of spatial arrangement on cell determination during mouse development,” Journal of Embryology and Experimental Morphology, vol. 28, no. 2, pp. 263–278, 1972. View at Google Scholar · View at Scopus
  33. A. K. Tarkowski and J. Wróblewska, “Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage,” Journal of Embryology and Experimental Morphology, vol. 18, no. 1, pp. 155–180, 1967. View at Google Scholar · View at Scopus
  34. A. Wyman, A. B. Pinto, R. Sheridan, and K. H. Moley, “One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring,” Endocrinology, vol. 149, no. 2, pp. 466–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Goldberg, T. Falcone, and M. Attaran, “In vitro fertilization update,” Cleveland Clinic Journal of Medicine, vol. 74, pp. 329–338, 2007. View at Google Scholar
  36. J. Mihajlik, P. Rehák, J. Veselá, Š. Čikoš, V. Baran, and J. Koppel, “Preimplantation embryo development in ICR mice after streptozotocin treatment,” Physiological Research, vol. 47, no. 1, pp. 67–72, 1998. View at Google Scholar · View at Scopus
  37. A. Ornoy, D. Kimyagarov, P. Yaffee, R. Abir, I. Raz, and R. Kohen, “Role of reactive oxygen species in diabetes-induced embryotoxicity: studies on pre-implantation mouse embryos cultured in serum from diabetic pregnant women,” Israel Journal of Medical Sciences, vol. 32, no. 11, pp. 1066–1073, 1996. View at Google Scholar · View at Scopus
  38. S. Pampfer, I. Vanderheyden, Y.-D. Wuu, L. Baufays, O. Maillet, and R. De Hertogh, “Possible role for TNF-α in early embryopathy associated with maternal diabetes in the rat,” Diabetes, vol. 44, no. 5, pp. 531–536, 1995. View at Google Scholar · View at Scopus
  39. R. B. Fraser, S. L. Waite, K. A. Wood, and K. L. Martin, “Impact of hyperglycemia on early embryo development and embryopathy: in vitro experiments using a mouse model,” Human Reproduction, vol. 22, no. 12, pp. 3059–3068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Pampfer, I. Vanderheyden, J. E. McCracken, J. Vesela, and R. De Hertogh, “Increased cell death in rat blastocysts exposed to maternal diabetes in utero and to high glucose or tumor necrosis factor-α in vitro,” Development, vol. 124, no. 23, pp. 4827–4836, 1997. View at Google Scholar · View at Scopus
  41. K. H. Moley, M. M.-Y. Chi, C. M. Knudson, S. J. Korsmeyer, and M. M. Mueckler, “Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways,” Nature Medicine, vol. 4, no. 12, pp. 1421–1424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. D. K. Gardner, M. Lane, J. Stevens, T. Schlenker, and W. B. Schoolcraft, “Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer,” Fertil Steril, vol. 73, pp. 1155–1158, 2000. View at Google Scholar
  43. C. Gicquel, V. Gaston, J. Mandelbaum, J. P. Siffroi, A. Flahault, and Y. Le Bouc, “In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene,” The American Journal of Human Genetics, vol. 72, pp. 1338–1341, 2003. View at Google Scholar
  44. E. R. Maher, L. A. Brueton, S. C. Bowdin et al., “Beckwith-Wiedemann syndrome and assisted reproduction technology (ART),” Journal of Medical Genetics, vol. 40, pp. 62–64, 2003. View at Google Scholar
  45. A. Bueno, Y. K. Sinzato, M. J. Sudano et al., “Diabetic intrauterine environment: relationship between maternal TNF-alpha and rat early embryonic development,” Submitted.
  46. I. L. Iessi, A. Bueno, Y. K. Sinzato, K. N. Taylor, M. V. Rudge, and D. C. Damasceno, “Evaluation of neonatally-induced mild diabetes in rats: maternal and fetal repercussions,” Diabetology and Metabolic Syndrome, vol. 2, no. 1, article 37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. K. Sinzato, G. T. Volpato, I. L. Iessi et al., “Neonatally induced mild diabetes in rats and its effect on maternal, placental, and fetal parameters,” Experimental Diabetes Research, vol. 2012, Article ID 108163, 7 pages, 2012. View at Publisher · View at Google Scholar
  48. B. Dallaqua, F. H. Saito, T. Rodrigues et al., “Treatment with Azadirachta indica in diabetic pregnant rats: negative effects on maternal outcome,” J Ethnopharmacol, vol. 143, no. 3, pp. 805–811, 2012. View at Google Scholar
  49. D. C. Damasceno, A. C. I. Kiss, Y. K. Sinzato et al., “Maternal-fetal outcome, lipid profile and oxidative stress of diabetic rats neonatally exposed to streptozotocin,” Experimental and Clinical Endocrinology and Diabetes, vol. 119, no. 7, pp. 408–413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. F. H. Saito, D. C. Damasceno, W. G. Kempinas et al., “Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development,” Diabetology and Metabolic Syndrome, vol. 2, no. 1, article 26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. C. Kiss, P. H. Lima, Y. K. Sinzato et al., “Animal models for clinical and gestational diabetes: maternal and fetal outcomes,” Diabetol Metab Syndr, vol. 1, no. 1, article 21, 2009. View at Google Scholar
  52. A. Kervran, M. Guillaume, and A. Jost, “The endocrine pancreas of the fetus from diabetic pregnant rat,” Diabetologia, vol. 15, no. 5, pp. 387–393, 1978. View at Google Scholar · View at Scopus
  53. N. L. Gelardi, C.-J. M. Cha, and W. Oh, “Glucose metabolism in adipocytes of obese offspring of mild hyperglycemic rats,” Pediatric Research, vol. 28, no. 6, pp. 641–645, 1990. View at Google Scholar · View at Scopus
  54. I. López-Soldado and E. Herrera, “Different diabetogenic response to moderate doses of streptozotocin in pregnant rats, and its long-term consequences in the offspring,” Experimental Diabesity Research, vol. 4, no. 2, pp. 107–118, 2003. View at Google Scholar · View at Scopus
  55. S. Caluwaerts, K. Holemans, R. Van Bree, J. Verhaeghe, and F. A. Van Assche, “Is low-dose streptozotocin in rats an adequate model for gestational diabetes mellitus?” Journal of the Society for Gynecologic Investigation, vol. 10, no. 4, pp. 216–221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. Z. Z. Chong, F. Li, and K. Maiese, “Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease,” Progress in Neurobiology, vol. 75, no. 3, pp. 207–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. C. Damasceno, G. T. Volpato, I. D. M. Paranhos Calderon, and M. V. Cunha Rudge, “Oxidative stress and diabetes in pregnant rats,” Animal Reproduction Science, vol. 72, no. 3-4, pp. 235–244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 3th edition, 1999.
  60. A. Yessoufou, N. Soulaimann, S. A. Merzouk et al., “N-3 fatty acids modulate antioxidant status in diabetic rats and their macrosomic offspring,” International Journal of Obesity, vol. 30, no. 5, pp. 739–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. P. F. A. Heesakkers and R. R. R. Gerretsen, “Urinary incontinence: sphincter functioning from a urological perspective,” Digestion, vol. 69, no. 2, pp. 93–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. J.-M. Yang, S.-H. Yang, S.-Y. Yang, E. Yang, W.-C. Huang, and C.-R. Tzeng, “Clinical and pathophysiological correlates of the symptom severity of stress urinary incontinence,” International Urogynecology Journal and Pelvic Floor Dysfunction, vol. 21, no. 6, pp. 637–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. M. Morgan, W. Umek, K. Guire, H. K. Morgan, A. Garabrant, and J. O. L. DeLancey, “Urethral sphincter morphology and function with and without stress incontinence,” Journal of Urology, vol. 182, no. 1, pp. 203–209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Piculo, G. Marini, A. M. P. Barbosa et al., “Urethral striated muscle and extracellular matrix morphologic characteristics among mild diabetic pregnant rats,” submitted to International Urogynecology Journal.
  65. R. Mastrocola, P. Reffo, F. Penna et al., “Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress,” Free Radical Biology and Medicine, vol. 44, no. 4, pp. 584–593, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Andersen, “Muscular endurance in long-term IDDM patients,” Diabetes Care, vol. 21, no. 4, pp. 604–609, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Andersen, P. L. Poulsen, C. E. Mogensen, and J. Jakobsen, “Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications,” Diabetes, vol. 45, no. 4, pp. 440–445, 1996. View at Google Scholar · View at Scopus
  68. A. Oberbach, Y. Bossenz, S. Lehmann et al., “Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes,” Diabetes Care, vol. 29, no. 4, pp. 895–900, 2006. View at Google Scholar · View at Scopus
  69. B. Chen and J. Yeh, “Alterations in connective tissue metabolism in stress incontinence and prolapse,” Journal of Urology, vol. 186, no. 5, pp. 1768–1772, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. C. C. G. Chen, A. Hijaz, J. A. Drazba, M. S. Damaser, and F. Daneshgari, “Collagen remodeling and suburethral inflammation might account for preserved anti-incontinence effects of cut polypropylene sling in rat model,” Urology, vol. 73, no. 2, pp. 415–420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Aerts and F. A. Van Assche, “Animal evidence for the transgenerational development of diabetes mellitus,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 5-6, pp. 894–903, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. V. C. Rudge, I. D. M. P. Calderon, M. D. Ramos, J. F. Abbade, and L. M. S. S. Rugolo, “Perinatal outcome of pregnancies complicated by diabetes and by maternal daily hyperglycemia not related to diabetes: a retrospective 10-year analysis,” Gynecologic and Obstetric Investigation, vol. 50, no. 2, pp. 108–112, 2000. View at Google Scholar · View at Scopus
  73. A. L. Fowden, “The role of insulin in fetal growth,” Early Human Development, vol. 29, no. 1–3, pp. 177–181, 1992. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Holemans, L. Aerts, and F. A. Van Assche, “Fetal growth restriction and consequences for the offspring in animal models,” Journal of the Society for Gynecologic Investigation, vol. 10, no. 7, pp. 392–399, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Caluwaerts, K. Holemans, R. Van Bree, J. Verhaeghe, and F. A. Van Assche, “Aging does not aggravate the pregnancy-induced adaptations in glucose tolerance in rats,” Metabolism, vol. 55, no. 3, pp. 409–414, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. A. Hanson and P. D. Gluckman, “Developmental origins of health and disease: moving from biological concepts to interventions and policy,” International Journal of Gynecology and Obstetrics, vol. 115, no. 11, pp. 60003–60009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Aerts and F. A. Van Assche, “Rat foetal endocrine pancreas in experimental diabetes,” Journal of Endocrinology, vol. 73, no. 2, pp. 339–346, 1977. View at Google Scholar · View at Scopus
  78. L. Aerts and F. A. Van Assche, “Endocrine pancreas in the offspring of rats with experimentally induced diabetes,” Journal of Endocrinology, vol. 88, no. 1, pp. 81–88, 1981. View at Google Scholar · View at Scopus
  79. L. Aerts and F. A. Van Assche, “Transmission of experimentally induced diabetes in pregnant rats to their offspring in subsequent generations: a morphometric study of maternal and fetal endocrine pancreas at histological and ultrastructural level,” in Lessons From Animal Diabetes, E. Shalfrir and A. E. Renold, Eds., pp. 705–710, Libbey, London, UK, 1984. View at Google Scholar
  80. F. A. Van Assche and L. Aerts, “Long term effect of diabetes and pregnancy in the rat: is acquired insulin resistanse responsible?” in Diabetes, M. Serrano-Rios and P. J. Lefebvre, Eds., pp. 590–597, Amsterdam, The Netherlands, 1986. View at Google Scholar
  81. A. O. Martin, J. L. Simpson, C. Ober, and N. Freinkel, “Frequency of diabetes mellitus in mothers of probands with gestational diabetes: possible maternal influence on the predisposition to gestational diabetes,” American Journal of Obstetrics and Gynecology, vol. 151, no. 4, pp. 471–475, 1985. View at Google Scholar · View at Scopus
  82. L. Aerts and F. A. Van Assche, “Is gestational diabetes an acquired condition?” Journal of Developmental Physiology, vol. 1, no. 3, pp. 219–225, 1979. View at Google Scholar · View at Scopus
  83. L. Aerts, R. Van Bree, V. Feytons, W. Rombauts, and F. A. Van Assche, “Plasma amino acids in diabetic pregnant rats and in their fetal and adult offspring,” Biology of the Neonate, vol. 56, no. 1, pp. 31–39, 1989. View at Google Scholar · View at Scopus
  84. H. Merzouk, S. Madani, A. Hichami, J. Prost, J. Belleville, and N. A. Khan, “Age-related changes in fatty acids in obese offspring of streptozotocin-induced diabetic rats,” Obesity Research, vol. 10, no. 7, pp. 703–714, 2002. View at Google Scholar · View at Scopus
  85. H. Merzouk, S. Madani, A. Hichami et al., “Impaired lipoprotein metabolism in obese offspring of streptozotocin-induced diabetic rats,” Lipids, vol. 37, no. 8, pp. 773–781, 2002. View at Google Scholar · View at Scopus
  86. W. Oh, N. L. Gelardi, and C.-J. Cha, “Maternal hyperglycemia in pregnant rats: its effect on growth and carbohydrate metabolism in the offspring,” Metabolism, vol. 37, no. 12, pp. 1146–1151, 1988. View at Google Scholar · View at Scopus
  87. W. Oh, N. L. Gelardi, and C.-J. M. Cha, “The cross-generation effect of neonatal macrosomia in rat pups of streptozotocin-induced diabetes,” Pediatric Research, vol. 29, no. 6, pp. 606–610, 1991. View at Google Scholar · View at Scopus
  88. S. B. Corvino, Exercício físico no diabete transgeracional de ratas: efeito a performance reprodutiva e nos hormônios sexuais [Ph.D. dissertation], Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil, 2012.
  89. A. O. Netto, Análise de genotoxicidade: otimização de método laboratorial e avaliação em recém-nascidos de mães com restrição de crescimento intrauterino exercitadas durante a prenhez [Ph.D. dissertation], Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, Brazil, 2013.