Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2014, Article ID 768024, 7 pages
http://dx.doi.org/10.1155/2014/768024
Review Article

Decompensation of β-Cells in Diabetes: When Pancreatic β-Cells Are on ICE(R)

1European Genomic Institute for Diabetes (EGID), Lille 2 University, UMR 8199, 3508 Lille, France
2Faculty of Medicine West, 1 Place de Verdun, 59045 Lille, France

Received 24 October 2013; Accepted 3 January 2014; Published 10 February 2014

Academic Editor: Stephane Dalle

Copyright © 2014 Roberto Salvi and Amar Abderrahmani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Molina, N. S. Foulkes, E. Lalli, and P. Sassone-Corsi, “Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor,” Cell, vol. 75, no. 5, pp. 875–886, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. W. A. Sands and T. M. Palmer, “Regulating gene transcription in response to cyclic AMP elevation,” Cellular Signalling, vol. 20, no. 3, pp. 460–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. M. Fimia, D. de Cesare, and P. Sassone-Corsi, “A family of LIM-only transcriptional coactivators: tissue-specific expression and selective activation of CREB and CREM,” Molecular and Cellular Biology, vol. 20, no. 22, pp. 8613–8622, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Hai and M. G. Hartman, “The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis,” Gene, vol. 273, no. 1, pp. 1–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Conkright, E. Guzmán, L. Flechner, A. I. Su, J. B. Hogenesch, and M. Montminy, “Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness,” Molecular Cell, vol. 11, no. 4, pp. 1101–1108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zhang, D. T. Odom, S.-H. Koo et al., “Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4459–4464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. de Cesare and P. Sassone-Corsi, “Transcriptional regulation by cyclic AMP-responsive factors,” Progress in Nucleic Acid Research and Molecular Biology, vol. 64, pp. 343–369, 2000. View at Google Scholar · View at Scopus
  8. E. Lalli and P. Sassone-Corsi, “Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 21, pp. 9633–9637, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Bodor, Z. Fehervari, B. Diamond, and S. Sakaguchi, “ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells,” European Journal of Immunology, vol. 37, no. 4, pp. 884–895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Ohtsubo, T. Ichiki, R. Miyazaki et al., “Inducible cAMP early repressor inhibits growth of vascular smooth muscle cell,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 7, pp. 1549–1555, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Nervina, S. Tetradis, Y.-F. Huang, D. Harrison, C. Molina, and B. E. Kream, “Expression of inducible cAMP early repressor is coupled to the cAMP-protein kinase A signaling pathway in osteoblasts,” Bone, vol. 32, no. 5, pp. 483–490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Wang and T. J. Murphy, “The inducible cAMP early repressor ICERIIγ inhibits CREB and AP-1 transcription but not AT1 receptor gene expression in vascular smooth muscle cells,” Molecular and Cellular Biochemistry, vol. 212, no. 1-2, pp. 111–119, 2000. View at Google Scholar · View at Scopus
  13. G. Servillo, M. A. Della Fazia, and P. Sassone-Corsi, “Coupling cAMP signaling to transcription in the liver: pivotal role of CREB and CREM,” Experimental Cell Research, vol. 275, no. 2, pp. 143–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. H. Stehle, C. von Gall, and H.-W. Korf, “Analysis of cell signalling in the rodent pineal gland deciphers regulators of dynamic transcription in neural/endocrine cells,” European Journal of Neuroscience, vol. 14, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Mazzucchelli and P. Sassone-Corsi, “The inducible cyclic adenosine monophosphate early repressor (ICER) in the pituitary intermediate lobe: role in the stress response,” Molecular and Cellular Endocrinology, vol. 155, no. 1-2, pp. 101–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Brajkovic, R. Marenzoni, D. Favre et al., “Evidence for tuning adipocytes ICER levels for obesity care,” Adipocyte, vol. 1, no. 3, pp. 157–160, 2012. View at Google Scholar
  17. A. Inada, Y. Someya, Y. Yamada et al., “The cyclic AMP response element modulator family regulates the insulin gene transcription by interacting with transcription factor IID,” The Journal of Biological Chemistry, vol. 274, no. 30, pp. 21095–21103, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Kell, F. Dehghani, H. Wicht, C. A. Molina, H.-W. Korf, and J. H. Stehle, “Distribution of transcription factor inducible cyclicAMP early repressor (ICER) in rodent brain and pituitary,” Journal of Comparative Neurology, vol. 478, no. 4, pp. 379–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. N. S. Foulkes, J. Borjigin, S. H. Snyder, and P. Sassone-Corsi, “Rhythmic transcription: the molecular basis of circadian melatonin synthesis,” Trends in Neurosciences, vol. 20, no. 10, pp. 487–492, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Sarlak, A. Jenwitheesuk, B. Chetsawang, and P. Govitrapong, “Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration,” Journal of Pharmacological Sciences, vol. 123, pp. 9–24, 2013. View at Google Scholar
  21. S. van de Velde, M. F. Hogan, and M. Montminy, “mTOR links incretin signaling to HIF induction in pancreatic beta cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 41, pp. 16876–16882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. I.-S. Cho, M. Jung, K.-S. Kwon et al., “Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription,” PLoS ONE, vol. 7, no. 4, Article ID e34860, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Melloul, S. Marshak, and E. Cerasi, “Regulation of insulin gene transcription,” Diabetologia, vol. 45, no. 3, pp. 309–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Abderrahmani, V. Plaisance, P. Lovis, and R. Regazzi, “Mechanisms controlling the expression of the components of the exocytotic apparatus under physiological and pathological conditions,” Biochemical Society Transactions, vol. 34, no. 5, pp. 696–700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Abderrahmani, S. Cheviet, M. Ferdaoussi, T. Coppola, G. Waeber, and R. Regazzi, “ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis,” The EMBO Journal, vol. 25, no. 5, pp. 977–986, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Abderrahmani, “Adaptation of the secretory machinery to pathophysiological conditions,” in Molecular Mechanisms of Exocytosis, R. Regazzi, Ed., pp. 161–173, Springer, New York, NY, USA, 2007. View at Google Scholar
  27. F. Allagnat, F. Alonso, D. Martin, A. Abderrahmani, G. Waeber, and J.-A. Haefliger, “ICER-1γ overexpression drives palmitate-mediated connexin36 down-regulation in insulin-secreting cells,” The Journal of Biological Chemistry, vol. 283, no. 9, pp. 5226–5234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Haefliger, D. Martin, D. Favre et al., “Reduction of connexin36 content by ICER-1 contributes to insulin-secreting cells apoptosis induced by oxidized LDL particles,” PLoS ONE, vol. 8, no. 1, Article ID e55198, 2013. View at Google Scholar
  29. J. A. Haefliger, F. Rohner-Jeanrenaud, D. Caille, A. Charollais, P. Meda, and F. Allagnat, “Hyperglycemia downregulates Connexin36 in pancreatic islets via the upregulation of ICER-1/ICER-1γ,” Journal of Molecular Endocrinology, vol. 51, no. 1, pp. 49–58, 2013. View at Google Scholar
  30. F. Allagnat, D. Martin, D. F. Condorelli, G. Waeber, and J.-A. Haefliger, “Glucose represses connexin36 in insulin-secreting cells,” Journal of Cell Science, vol. 118, no. 22, pp. 5335–5344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Cigliola, V. Chellakudam, W. Arabieter, and P. Meda, “Connexins and β-cell functions,” Diabetes Research and Clinical Practice, vol. 99, no. 3, pp. 250–259, 2013. View at Google Scholar
  32. A. Inada, Y. Hamamoto, Y. Tsuura et al., “Overexpression of inducible cyclic AMP early repressor inhibits transactivation of genes and cell proliferation in pancreatic β cells,” Molecular and Cellular Biology, vol. 24, no. 7, pp. 2831–2841, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Inada, G. C. Weir, and S. Bonner-Weir, “Induced ICER Iγ down-regulates cyclin a expression and cell proliferation in insulin-producing β cells,” Biochemical and Biophysical Research Communications, vol. 329, no. 3, pp. 925–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. U. S. Jhala, G. Canettieri, R. A. Screaton et al., “cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2,” Genes and Development, vol. 17, no. 13, pp. 1575–1580, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Favre, G. Niederhauser, D. Fahmi et al., “Role for inducible cAMP early repressor in promoting pancreatic beta cell dysfunction evoked by oxidative stress in human and rat islets,” Diabetologia, vol. 54, no. 9, pp. 2337–2346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Abderrahmani, M. Steinmann, V. Plaisance et al., “The transcriptional repressor REST determines the cell-specific expression of the human MAPK8IP1 gene encoding IB1 (JIP-1),” Molecular and Cellular Biology, vol. 21, no. 21, pp. 7256–7267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ferdaoussi, S. Abdelli, J.-Y. Yang et al., “Exendin-4 protects β-cells from interleukin-1β-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway,” Diabetes, vol. 57, no. 5, pp. 1205–1215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Marcheva, K. M. Ramsey, E. D. Buhr et al., “Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes,” Nature, vol. 466, no. 7306, pp. 627–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. L. A. Sadacca, K. A. Lamia, A. S. deLemos, B. Blum, and C. J. Weitz, “An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice,” Diabetologia, vol. 54, no. 1, pp. 120–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Lee, M.-S. Kim, R. Li et al., “Loss of Bmal1 leads to uncoupling and impaired glucose-stimulated insulin secretion in β-cells,” Islets, vol. 3, no. 6, pp. 381–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Yoshino and S.-I. Imai, “A clock ticks in pancreatic β cells,” Cell Metabolism, vol. 12, no. 2, pp. 107–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. L. Partch, C. B. Green, and J. S. Takahashi, “Molecular architecture of the mammalian circadian clock,” Trends in Cell Biology, vol. 23, pp. 1–10, 2013. View at Google Scholar
  43. Y. Naruse, K. Oh-Hashi, N. Iijima, M. Naruse, H. Yoshioka, and M. Tanaka, “Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation,” Molecular and Cellular Biology, vol. 24, no. 14, pp. 6278–6287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Jagannath, R. Butler, S. I. H. Godinho et al., “The CRTC1-SIK1 pathway regulates entrainment of the circadian clock,” Cell, vol. 154, no. 5, pp. 1100–1111, 2013. View at Publisher · View at Google Scholar
  45. C. Vollmers, S. Gill, L. DiTacchio, S. R. Pulivarthy, H. D. Le, and S. Panda, “Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21453–21458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. E. Zhang, Y. Liu, R. Dentin et al., “Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis,” Nature Medicine, vol. 16, no. 10, pp. 1152–1156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. U. P. Zmrzljak, A. Korencic, R. Kosir, M. Golicnic, P. Sassone-Corsi, and D. Rozman, “Inducible cAMP early repressor regulates the Period 1 gene of the hepatic and adrenal clocks,” The Journal of Biological Chemistry, vol. 288, pp. 10318–10327, 2013. View at Google Scholar
  48. A. Inada, Y. Yamada, Y. Someya et al., “Transcriptional repressors are increased in pancreatic islets of type 2 diabetic rats,” Biochemical and Biophysical Research Communications, vol. 253, no. 3, pp. 712–718, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Favre, E. le Gouill, D. Fahmi et al., “Impaired expression of the inducible cAMP early repressor accounts for sustained adipose CREB activity in obesity,” Diabetes, vol. 60, no. 12, pp. 3169–3174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Boden and G. I. Shulman, “Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction,” European Journal of Clinical Investigation, vol. 32, supplement 3, pp. 14–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Abderrahmani, G. Niederhauser, D. Favre et al., “Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells,” Diabetologia, vol. 50, no. 6, pp. 1304–1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. Hussain, P. B. Daniel, and J. F. Habener, “Glucagon stimulates expression of the inducible cAMP early repressor and suppresses insulin gene expression in pancreatic β-cells,” Diabetes, vol. 49, no. 10, pp. 1681–1690, 2000. View at Google Scholar · View at Scopus
  53. L. Qi, M. Saberi, E. Zmuda et al., “Adipocyte CREB promotes insulin resistance in obesity,” Cell Metabolism, vol. 9, no. 3, pp. 277–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Costes, B. Vandewalle, C. Tourrel-Cuzin et al., “Degradation of cAMP-responsive element-binding protein by the ubiquitin-proteasome pathway contributes to glucotoxicity in β-cells and human pancreatic islets,” Diabetes, vol. 58, no. 5, pp. 1105–1115, 2009. View at Publisher · View at Google Scholar · View at Scopus