Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2014 (2014), Article ID 873679, 7 pages
http://dx.doi.org/10.1155/2014/873679
Review Article

Role of Ink4a/Arf Locus in Beta Cell Mass Expansion under Physiological and Pathological Conditions

1European Genomic Institute for Diabetes (EGID), CNRS UMR 8199, Lille 2 University, 59000 Lille, France
2Department of Genomics of Common Disease, Hammersmith Hospital, Imperial College London, London W12 0NN, UK

Received 31 October 2013; Accepted 20 December 2013; Published 6 February 2014

Academic Editor: Romano Regazzi

Copyright © 2014 Elisabet Salas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. C. Butler, J. J. Meier, A. E. Butler, and A. Bhushan, “The replication of beta cells in normal physiology, in disease and for therapy,” Nature Clinical Practice. Endocrinology & Metabolism, vol. 3, no. 11, pp. 758–768, 2007. View at Publisher · View at Google Scholar
  2. U. Gunasekaran and M. Gannon, “Type 2 diabetes and the aging pancreatic beta cell,” Aging, vol. 3, no. 6, pp. 565–575, 2011. View at Google Scholar · View at Scopus
  3. A. Satyanarayana and P. Kaldis, “Mammalian cell-cycle regulation: several cdks, numerous cyclins and diverse compensatory mechanisms,” Oncogene, vol. 28, no. 33, pp. 2925–2939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. H. Golias, A. Charalabopoulos, and K. Charalabopoulos, “Cell proliferation and cell cycle control: a mini review,” International Journal of Clinical Practice, vol. 58, no. 12, pp. 1134–1141, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Z. Kuo, W. H. Sheu, T. L. Assimes et al., “Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population,” Diabetologia, vol. 56, no. 12, pp. 2619–2628, 2013. View at Publisher · View at Google Scholar
  6. N. M. Al-Daghri, K. M. Alkharfy, M. S. Alokail et al., “Assessing the contribution of 38 genetic loci to the risk of type 2 diabetes in the Saudi Arabian population,” Clinical Endocrinology, 2013. View at Publisher · View at Google Scholar
  7. S. Cauchi, I. Ezzidi, Y. El Achhab et al., “European genetic variants associated with type 2 diabetes in North African arabs,” Diabetes & Metabolism, vol. 38, no. 4, pp. 316–323, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Takeuchi, M. Serizawa, K. Yamamoto et al., “Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population,” Diabetes, vol. 58, no. 7, pp. 1690–1699, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Doria, M.-E. Patti, and C. R. Kahn, “The emerging genetic architecture of type 2 diabetes,” Cell Metabolism, vol. 8, no. 3, pp. 186–200, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Peng, D. Hu, C. Gu et al., “The relationship between five widely-evaluated variants in CDKN2A/B and CDKAL1 genes and the risk of type 2 diabetes: a meta-analysis,” Gene, vol. 531, no. 2, pp. 435–443, 2013. View at Publisher · View at Google Scholar
  11. G. Chen, Y. Xu, Y. Lin et al., “Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population,” Journal of Diabetes, vol. 5, no. 2, pp. 136–145, 2013. View at Publisher · View at Google Scholar
  12. H. Li, X. Tang, Q. Liu, and Y. Wang, “Association between type 2 diabetes and rs10811661 polymorphism upstream of CDKN2A/B: a meta-analysis,” Acta Diabetologica, vol. 50, no. 5, pp. 657–662, 2013. View at Publisher · View at Google Scholar
  13. G. W. Landman, J. V. van Vliet-Ostaptchouk, N. Kleefstra et al., “Association between 9p21 genetic variants and mortality risk in a prospective cohort of patients with type 2 diabetes (ZODIAC-15),” Cardiovascular Diabetology, vol. 11, article 138, 2012. View at Publisher · View at Google Scholar
  14. M. A. Gamboa-Melendez, A. Huerta-Chagoya, H. Moreno-Macias et al., “Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population,” Diabetes, vol. 61, no. 12, pp. 3314–3321, 2012. View at Publisher · View at Google Scholar
  15. R. Nemr, A. W. Almawi, A. Echtay, M. S. Sater, H. S. Daher, and W. Y. Almawi, “Replication study of common variants in CDKAL1 and CDKN2A/2B genes associated with type 2 diabetes in Lebanese Arab population,” Diabetes Research and Clinical Practice, vol. 95, no. 2, pp. e37–e40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Gupta, D. G. Vinay, S. Rafiq et al., “Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs,” Diabetologia, vol. 55, no. 2, pp. 349–357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Cauchi, D. Meyre, E. Durand et al., “Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value,” PLoS ONE, vol. 3, no. 5, Article ID e2031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Duesing, G. Fatemifar, G. Charpentier et al., “Strong association of common variants in the CDKN2A/CDKN2B region with type 2 diabetes in French europids,” Diabetologia, vol. 51, no. 5, pp. 821–826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. L. Hribal, I. Presta, T. Procopio et al., “Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B,” Diabetologia, vol. 54, no. 4, pp. 795–802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Rayess, M. B. Wang, and E. S. Srivatsan, “Cellular senescence and tumor suppressor gene p16,” International Journal of Cancer, vol. 130, no. 8, pp. 1715–1725, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. N. M. Fiaschi-Taesch, J. W. Kleinberger, F. G. Salim et al., “Human pancreatic beta-cell G1/S molecule cell cycle atlas,” Diabetes, vol. 62, no. 7, pp. 2450–2459, 2013. View at Publisher · View at Google Scholar
  22. N. M. Fiaschi-Taesch, J. W. Kleinberger, F. G. Salim et al., “Cytoplasmic-nuclear trafficking of G1/S cell cycle molecules and adult human beta-cell replication: a revised model of human beta-cell G1/S control,” Diabetes, vol. 62, no. 7, pp. 2460–2470, 2013. View at Publisher · View at Google Scholar
  23. J. Martín, S. L. Hunt, P. Dubus et al., “Genetic rescue of Cdk4 null mice restores pancreatic β-cell proliferation but not homeostatic cell number,” Oncogene, vol. 22, no. 34, pp. 5261–5269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Fajas, J.-S. Annicotte, S. Miard, D. Sarruf, M. Watanabe, and J. Auwerx, “Impaired pancreatic growth, β cell mass, and β cell function in E2F1-/- mice,” Journal of Clinical Investigation, vol. 113, no. 9, pp. 1288–1295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. J.-S. Annicotte, E. Blanchet, C. Chavey et al., “The CDK4-pRB-E2F1 pathway controls insulin secretion,” Nature Cell Biology, vol. 11, no. 8, pp. 1017–1023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Fajas, E. Blanchet, and J.-S. Annicotte, “The CDK4-pRB-E2F1 pathway: a new modulator of insulin secretion,” Islets, vol. 2, no. 1, pp. 51–53, 2010. View at Google Scholar · View at Scopus
  27. L. Fajas, “Re-thinking cell cycle regulators: the cross-talk with metabolism,” Frontiers in Oncology, vol. 3, article 4, 2013. View at Publisher · View at Google Scholar
  28. H. Okamoto, M. L. Hribal, H. V. Lin, W. R. Bennett, A. Ward, and D. Accili, “Role of the forkhead protein FoxO1 in β cell compensation to insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 775–782, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. N. Kulkarni, “The islet beta-cell,” The International Journal of Biochemistry & Cell Biology, vol. 36, no. 3, pp. 365–371, 2004. View at Publisher · View at Google Scholar
  30. M. Teta, S. Y. Long, L. M. Wartschow, M. M. Rankin, and J. A. Kushner, “Very slow turnover of β-cells in aged adult mice,” Diabetes, vol. 54, no. 9, pp. 2557–2567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. J. Meier, A. E. Butler, Y. Saisho et al., “β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans,” Diabetes, vol. 57, no. 6, pp. 1584–1594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. S.-I. Tschen, S. Dhawan, T. Gurlo, and A. Bhushan, “Age-dependent decline in β-cell proliferation restricts the capacity of β-cell regeneration in mice,” Diabetes, vol. 58, no. 6, pp. 1312–1320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Krishnamurthy, M. R. Ramsey, K. L. Ligon et al., “p16INK4a induces an age-dependent decline in islet regenerative potential,” Nature, vol. 443, no. 7110, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Agherbi, A. Gaussmann-Wenger, C. Verthuy, L. Chasson, M. Serrano, and M. Djabali, “Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence,” PLoS ONE, vol. 4, no. 5, Article ID e5622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Chen, X. Gu, I.-H. Su et al., “Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus,” Genes and Development, vol. 23, no. 8, pp. 975–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Kuzmichev, T. Jenuwein, P. Tempst, and D. Reinberg, “Different Ezh2-containing complexes target methylation of histone H1 or nucleosomal histone H3,” Molecular Cell, vol. 14, no. 2, pp. 183–193, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Kotake, R. Cao, P. Viatour, J. Sage, Y. Zhang, and Y. Xiong, “pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene,” Genes and Development, vol. 21, no. 1, pp. 49–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Zeng, Y. Kotake, X.-H. Pei, M. D. Smith, and Y. Xiong, “p53 binds to and is required for the repression of Arf tumor suppressor by HDAC and polycomb,” Cancer Research, vol. 71, no. 7, pp. 2781–2792, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Popov and J. Gil, “Epigenetic regulation of the INK4B-ARF-INK4a locus: in sickness and in health,” Epigenetics, vol. 5, no. 8, pp. 685–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Wang, K. Pan, Y. Chen, C. Huang, and X. Zhang, “The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4a expression,” Nucleic Acids Research, vol. 40, no. 3, pp. 981–995, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Moran, I. Akerman, M. van de Bunt et al., “Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes,” Cell Metabolism, vol. 16, no. 4, pp. 435–448, 2012. View at Publisher · View at Google Scholar
  42. Y. Kotake, T. Nakagawa, K. Kitagawa et al., “Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15INK4B tumor suppressor gene,” Oncogene, vol. 30, no. 16, pp. 1956–1962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Wan, R. Mathur, X. Hu et al., “Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway,” Cell Signal, vol. 25, no. 5, pp. 1086–1095, 2013. View at Publisher · View at Google Scholar
  44. P. Yi, J. S. Park, and D. A. Melton, “Betatrophin: a hormone that controls pancreatic beta cell proliferation,” Cell, vol. 153, no. 4, pp. 747–758, 2013. View at Publisher · View at Google Scholar
  45. G. Ren, J. Y. Kim, and C. M. Smas, “Identification of RIFL, a novel adipocyte-enriched insulin target gene with a role in lipid metabolism,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 303, no. 3, pp. E334–E351, 2012. View at Publisher · View at Google Scholar
  46. R. Zhang, “Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels,” Biochemical and Biophysical Research Communications, vol. 424, no. 4, pp. 786–792, 2012. View at Publisher · View at Google Scholar
  47. P. G. Dean, Y. C. Kudva, and M. D. Stegall, “Long-term benefits of pancreas transplantation,” Current Opinion in Organ Transplantation, vol. 13, no. 1, pp. 85–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. L. M. Lashinger, L. M. Harrison, A. J. Rasmussen et al., “Dietary energy balance modulation of Kras- and Ink4a/Arf+/--driven pancreatic cancer: the role of insulin-like growth factor-I,” Cancer Prevention Research, vol. 6, no. 10, pp. 1046–1055, 2013. View at Publisher · View at Google Scholar
  49. R. Jackstadt, P. Jung, and H. Hermeking, “AP4 directly downregulates p16 and p21 to suppress senescence and mediate transformation,” Cell Death & Disease, vol. 4, Article ID e775, 2013. View at Publisher · View at Google Scholar
  50. S. H. Lee, R. Piran, E. Keinan, A. Pinkerton, and F. Levine, “Induction of beta-cell replication by a synthetic HNF4alpha antagonist,” Stem Cells, vol. 31, no. 11, pp. 2396–2407, 2013. View at Publisher · View at Google Scholar