Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016 (2016), Article ID 3789217, 9 pages
http://dx.doi.org/10.1155/2016/3789217
Review Article

Diabetic Retinopathy: Animal Models, Therapies, and Perspectives

1Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
2Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
3Oklahoma Center for Neuroscience, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA

Received 14 August 2015; Accepted 6 December 2015

Academic Editor: Shuang-Xi Wang

Copyright © 2016 Xue Cai and James F. McGinnis. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-M. Lai, S. A. Dunlop, L. A. May et al., “Generation of transgenic mice with mild and severe retinal neovascularisation,” British Journal of Ophthalmology, vol. 89, no. 7, pp. 911–916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” The Lancet, vol. 376, no. 9735, pp. 124–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Robinson, V. A. Barathi, S. S. Chaurasia, T. Y. Wong, and T. S. Kern, “Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals,” Disease Models and Mechanisms, vol. 5, no. 4, pp. 444–456, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. D. A. Salz and A. J. Witkin, “Imaging in diabetic retinopathy,” Middle East African Journal of Ophthalmology, vol. 22, no. 2, pp. 145–150, 2015. View at Publisher · View at Google Scholar
  5. A. M. Abu El-Asrar, L. Dralands, L. Missotten, I. A. Al-Jadaan, and K. Geboes, “Expression of apoptosis markers in the retinas of human subjects with diabetes,” Investigative Ophthalmology and Visual Science, vol. 45, no. 8, pp. 2760–2766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Barber, E. Lieth, S. A. Khin, D. A. Antonetti, A. G. Buchanan, and T. W. Gardner, “Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin,” The Journal of Clinical Investigation, vol. 102, no. 4, pp. 783–791, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Ola and A. S. Alhomida, “Neurodegeneration in diabetic retina and its potential drug targets,” Current Neuropharmacology, vol. 12, no. 4, pp. 380–386, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Ng, M. A. Bearse Jr., M. E. Schneck, S. Barez, and A. J. Adams, “Local diabetic retinopathy prediction by multifocal ERG delays over 3 years,” Investigative Ophthalmology and Visual Science, vol. 49, no. 4, pp. 1622–1628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Barber, “Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss,” Science China Life Sciences, vol. 58, no. 6, pp. 541–549, 2015. View at Publisher · View at Google Scholar
  10. R. Mastropasqua, L. Toto, F. Cipollone, D. Santovito, P. Carpineto, and L. Mastropasqua, “Role of microRNAs in the modulation of diabetic retinopathy,” Progress in Retinal and Eye Research, vol. 43, pp. 92–107, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Das, P. G. McGuire, and S. Rangasamy, “Diabetic macular edema: pathophysiology and novel therapeutic targets,” Ophthalmology, vol. 122, no. 7, pp. 1375–1394, 2015. View at Publisher · View at Google Scholar
  12. H.-P. Hammes, Y. Feng, F. Pfister, and M. Brownlee, “Diabetic retinopathy: targeting vasoregression,” Diabetes, vol. 60, no. 1, pp. 9–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. A. Antonetti, A. J. Barber, S. Khin, E. Lieth, J. M. Tarbell, and T. W. Gardner, “Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group,” Diabetes, vol. 47, no. 12, pp. 1953–1959, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Tarr, K. Kaul, M. Chopra, E. M. Kohner, and R. Chibber, “Pathophysiology of diabetic retinopathy,” ISRN Ophthalmology, vol. 2013, Article ID 343560, 13 pages, 2013. View at Publisher · View at Google Scholar
  15. A. M. Joussen, V. Poulaki, M. L. Le et al., “A central role for inflammation in the pathogenesis of diabetic retinopathy,” The FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Semeraro, A. Cancarini, R. dell'Omo, S. Rezzola, M. R. Romano, and C. Costagliola, “Diabetic retinopathy: vascular and inflammatory disease,” Journal of Diabetes Research, vol. 2015, Article ID 582060, 16 pages, 2015. View at Publisher · View at Google Scholar
  17. E. C. Leal, A. Manivannan, K.-I. Hosoya et al., “Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy,” Investigative Ophthalmology and Visual Science, vol. 48, no. 11, pp. 5257–5265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Vorum and J. Ditzel, “Disturbance of inorganic phosphate metabolism in diabetes mellitus: its relevance to the pathogenesis of diabetic retinopathy,” Journal of Ophthalmology, vol. 2014, Article ID 135287, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Das, S. Stroud, A. Mehta, and S. Rangasamy, “New treatments for diabetic retinopathy,” Diabetes, Obesity and Metabolism, vol. 17, no. 3, pp. 219–230, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Lu, L. Lu, W. Chen, H. Chen, X. Xu, and Z. Zheng, “RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 253, no. 5, pp. 669–680, 2015. View at Publisher · View at Google Scholar
  21. Q. Y. Lu, W. Chen, L. Lu et al., “Involvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy,” International Journal of Clinical and Experimental Pathology, vol. 7, no. 10, pp. 7268–7277, 2014. View at Google Scholar
  22. T. Oshitari, N. Hata, and S. Yamamoto, “Endoplasmic reticulum stress and diabetic retinopathy,” Vascular Health and Risk Management, vol. 4, no. 1, pp. 115–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. H. Tang, L. Wang, F. Zeng, and K. Zhang, “Human genetics of diabetic retinopathy,” Journal of Endocrinological Investigation, vol. 37, no. 12, pp. 1165–1174, 2014. View at Publisher · View at Google Scholar
  24. M. A. Reddy, E. Zhang, and R. Natarajan, “Epigenetic mechanisms in diabetic complications and metabolic memory,” Diabetologia, vol. 58, no. 3, pp. 443–455, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Perrone, C. Matrone, and L. P. Singh, “Epigenetic modifications and potential new treatment targets in diabetic retinopathy,” Journal of Ophthalmology, vol. 2014, Article ID 789120, 10 pages, 2014. View at Publisher · View at Google Scholar
  26. F. A. A. Kwa and T. R. Thrimawithana, “Epigenetic modifications as potential therapeutic targets in age-related macular degeneration and diabetic retinopathy,” Drug Discovery Today, vol. 19, no. 9, pp. 1387–1393, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. B. M. Braunger, S. V. Leimbeck, A. Schlecht, C. Volz, H. Jägle, and E. R. Tamm, “Deletion of ocular transforming growth factor β signaling mimics essential characteristics of diabetic retinopathy,” The American Journal of Pathology, vol. 185, no. 6, pp. 1749–1768, 2015. View at Publisher · View at Google Scholar
  28. K. A. Hussein, K. Choksi, S. Akeel et al., “Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy,” Experimental Eye Research, vol. 125, pp. 79–88, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Wang, H. Shi, J. Zhang et al., “Toll-like receptor 4 in bone marrow-derived cells contributes to the progression of diabetic retinopathy,” Mediators of Inflammation, vol. 2014, Article ID 858763, 7 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Sugiyama, “Role of P2X7 receptors in the development of diabetic retinopathy,” World Journal of Diabetes, vol. 5, no. 2, pp. 141–145, 2014. View at Google Scholar
  31. L. P. Singh, “Thioredoxin interacting protein (TXNIP) and pathogenesis of diabetic retinopathy,” Journal of Clinical & Experimental Ophthalmology, vol. 4, 2013. View at Publisher · View at Google Scholar
  32. C. D. A. Stehouwer, J. Lambert, A. J. M. Donker, and V. W. M. Van Hinsbergh, “Endothelial dysfunction and pathogenesis of diabetic angiopathy,” Cardiovascular Research, vol. 34, no. 1, pp. 55–68, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Jiang, L. Yang, and Y. Luo, “Animal models of diabetic retinopathy,” Current Eye Research, vol. 40, no. 8, pp. 761–771, 2015. View at Publisher · View at Google Scholar
  35. A. K. W. Lai and A. C. Y. Lo, “Animal models of diabetic retinopathy: summary and comparison,” Journal of Diabetes Research, vol. 2013, Article ID 106594, 29 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Yoshioka, T. Kayo, T. Ikeda, and A. Koizumi, “A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice,” Diabetes, vol. 46, no. 5, pp. 887–894, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. A. J. Barber, D. A. Antonetti, T. S. Kern et al., “The Ins2Akita mouse as a model of early retinal complications in diabetes,” Investigative Ophthalmology & Visual Science, vol. 46, no. 6, pp. 2210–2218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Gastinger, A. R. Kunselman, E. E. Conboy, S. K. Bronson, and A. J. Barber, “Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2Akita diabetic mice,” Investigative Ophthalmology and Visual Science, vol. 49, no. 6, pp. 2635–2642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. J. R. Hombrebueno, M. Chen, R. G. Penalva, and H. Xu, “Loss of synaptic connectivity, particularly in second order neurons is a key feature of diabetic retinal neuropathy in the Ins2Akita mouse,” PLoS ONE, vol. 9, no. 5, Article ID e97970, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Ha, Y. Dun, M. Thangaraju et al., “Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons,” Investigative Ophthalmology and Visual Science, vol. 52, no. 1, pp. 527–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Wang, T. Takeuchi, S. Tanaka et al., “A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse,” The Journal of Clinical Investigation, vol. 103, no. 1, pp. 27–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. E. P. Rakoczy, I. S. Ali Rahman, N. Binz et al., “Characterization of a mouse model of hyperglycemia and retinal neovascularization,” The American Journal of Pathology, vol. 177, no. 5, pp. 2659–2670, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Wisniewska-Kruk, I. Klaassen, I. M. C. Vogels et al., “Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy,” Experimental Eye Research, vol. 122, pp. 123–131, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Bogdanov, L. Corraliza, J. A. Villena et al., “The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration,” PLoS ONE, vol. 9, no. 5, Article ID e97302, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. I. S. Samuels, B. A. Bell, A. Pereira, J. Saxon, and N. S. Peachey, “Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes,” Journal of Neurophysiology, vol. 113, no. 4, pp. 1085–1099, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. A. K. H. Cheung, M. K. L. Fung, A. C. Y. Lo et al., “Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice,” Diabetes, vol. 54, no. 11, pp. 3119–3125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Ly, M. F. Scheerer, S. Zukunft et al., “Retinal proteome alterations in a mouse model of type 2 diabetes,” Diabetologia, vol. 57, no. 1, pp. 192–203, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. D. M. Sherry, M. M. Wang, J. Bates, and L. J. Frishman, “Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits,” Journal of Comparative Neurology, vol. 465, no. 4, pp. 480–498, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Villacampa, V. Haurigot, and F. Bosch, “Proliferative retinopathies: animal models and therapeutic opportunities,” Current Neurovascular Research, vol. 12, no. 2, pp. 189–198, 2015. View at Publisher · View at Google Scholar
  50. J. Ruberte, E. Ayuso, M. Navarro et al., “Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease,” The Journal of Clinical Investigation, vol. 113, no. 8, pp. 1149–1157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Villacampa, A. Ribera, S. Motas et al., “Insulin-like growth factor I (IGF-I)-induced chronic gliosis and retinal stress lead to neurodegeneration in a mouse model of retinopathy,” The Journal of Biological Chemistry, vol. 288, no. 24, pp. 17631–17642, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Chronopoulos, S. Roy, E. Beglova, K. Mansfield, L. Wachtman, and S. Roy, “Hyperhexosemia-induced retinal vascular pathology in a novel primate model of diabetic retinopathy,” Diabetes, vol. 64, no. 7, pp. 2603–2608, 2015. View at Publisher · View at Google Scholar
  53. P. Osaadon, X. J. Fagan, T. Lifshitz, and J. Levy, “A review of anti-VEGF agents for proliferative diabetic retinopathy,” Eye, vol. 28, no. 5, pp. 510–520, 2014. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Wells, A. R. Glassman, A. R. Ayala et al., “Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema,” The New England Journal of Medicine, vol. 372, no. 13, pp. 1193–1203, 2015. View at Publisher · View at Google Scholar
  55. M. J. Elman, A. Ayala, N. M. Bressler et al., “Intravitreal Ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results,” Ophthalmology, vol. 122, no. 2, pp. 375–381, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. S. B. Bressler, T. Almukhtar, A. Bhorade et al., “Repeated intravitreous ranibizumab injections for diabetic macular edema and the risk of sustained elevation of intraocular pressure or the need for ocular hypotensive treatment,” JAMA Ophthalmology, vol. 133, no. 5, pp. 589–597, 2015. View at Publisher · View at Google Scholar
  57. P. A. Campochiaro, R. Channa, B. B. Berger et al., “Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study,” American Journal of Ophthalmology, vol. 155, no. 4, pp. 697–e2, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Simo and C. Hernandez, “Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence,” Progress in Retinal and Eye Research, vol. 48, pp. 160–180, 2015. View at Publisher · View at Google Scholar
  59. M. I. Nawaz, M. Abouammoh, H. A. Khan, A. S. Alhomida, M. F. Alfaran, and M. S. Ola, “Novel drugs and their targets in the potential treatment of diabetic retinopathy,” Medical Science Monitor, vol. 19, no. 1, pp. 300–308, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Wang, N. Wang, H. Tan, Y. Zhang, and Y. Feng, “Protective effect of a Chinese Medicine formula He-Ying-Qing-Re Formula on diabetic retinopathy,” Journal of Ethnopharmacology, vol. 169, pp. 295–304, 2015. View at Publisher · View at Google Scholar
  61. H. Huang, J. He, D. Johnson et al., “Deletion of placental growth factor prevents diabetic retinopathy and is associated with akt activation and HIF1α-VEGF pathway inhibition,” Diabetes, vol. 64, no. 1, pp. 200–212, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Babapoor-Farrokhran, K. Jee, B. Puchner et al., “Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy,” Proceedings of the National Academy of Sciences of the United States, vol. 112, no. 23, pp. E3030–E3039, 2015. View at Publisher · View at Google Scholar
  63. Y. Jiang, Q. Zhang, and J. J. Steinle, “Intravitreal injection of IGFBP-3 restores normal insulin signaling in diabetic rat retina,” PLoS ONE, vol. 9, no. 4, Article ID e93788, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Huang, W. Li, J. He, P. Barnabie, D. Shealy, and S. A. Vinores, “Blockade of tumor necrosis factor alpha prevents complications of diabetic retinopathy,” Journal of Clinical& Experimental Ophthalmology, vol. 5, no. 6, article 384, 2014. View at Publisher · View at Google Scholar
  65. J. He, H. Wang, Y. Liu, W. Li, D. Kim, and H. Huang, “Blockade of vascular endothelial growth factor receptor 1 prevents inflammation and vascular leakage in diabetic retinopathy,” Journal of Ophthalmology, vol. 2015, Article ID 605946, 11 pages, 2015. View at Publisher · View at Google Scholar
  66. Y. Chen, Y. Hu, M. Lin et al., “Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models,” Diabetes, vol. 62, no. 1, pp. 261–272, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. A. C. Keech, P. Mitchell, P. A. Summanen et al., “Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial,” The Lancet, vol. 370, no. 9600, pp. 1687–1697, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Simó and C. Hernández, “Fenofibrate for diabetic retinopathy,” The Lancet, vol. 370, no. 9600, pp. 1667–1668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Sharma, J. L. Ooi, J. Ong et al., “The use of fenofibrate in the management of patients with diabetic retinopathy: an evidence-based review,” Australian Family Physician, vol. 44, no. 6, pp. 367–370, 2015. View at Google Scholar
  70. M. Tikhonenko, T. A. Lydic, Y. Wang et al., “Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4,” Diabetes, vol. 59, no. 1, pp. 219–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Sapieha, J. Chen, A. Stahl et al., “Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice,” Nutrition and Diabetes, vol. 2, article e36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Lois, R. V. McCarter, C. O'Neill, R. J. Medina, and A. W. Stitt, “Endothelial progenitor cells in diabetic retinopath,” Frontiers in Endocrinology, vol. 5, article 44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Xiong, X. Du, J. Hu, T. Li, S. Du, and Q. Wu, “Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis,” Current Eye Research, vol. 39, no. 7, pp. 720–729, 2014. View at Publisher · View at Google Scholar · View at Scopus
  74. M. A. Ruiz, B. Feng, and S. Chakrabarti, “Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy,” PLoS ONE, vol. 10, no. 4, Article ID e0123987, 2015. View at Publisher · View at Google Scholar
  75. R. Mortuza, B. Feng, and S. Chakrabarti, “miR-195 regulates SIRT1-mediated changes in diabetic retinopathy,” Diabetologia, vol. 57, no. 5, pp. 1037–1046, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Di Marco, J. C. Jha, A. Sharma, J. L. Wilkinson-Berka, K. A. Jandeleit-Dahm, and J. B. de Haan, “Are reactive oxygen species still the basis for diabetic complications?” Clinical Science, vol. 129, no. 2, pp. 199–216, 2015. View at Publisher · View at Google Scholar
  77. M. Zhang, C. An, Y. Gao, R. K. Leak, J. Chen, and F. Zhang, “Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection,” Progress in Neurobiology, vol. 100, no. 1, pp. 30–47, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. R. C. Taylor, G. Acquaah-Mensah, M. Singhal, D. Malhotra, and S. Biswal, “Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress,” PLoS Computational Biology, vol. 4, no. 8, Article ID e1000166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. M. Tan and J. B. de Haan, “Combating oxidative stress in diabetic complications with Nrf2 activators: how much is too much?” Redox Report, vol. 19, no. 3, pp. 107–117, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Jeevanandam, M. K. Danquah, S. Debnath, V. S. Meka, and Y. S. Chan, “Opportunities for nano-formulations in type 2 diabetes mellitus treatments,” Current Pharmaceutical Biotechnology, vol. 16, no. 10, pp. 853–870, 2015. View at Google Scholar
  81. D. Yohan and B. D. Chithrani, “Applications of nanoparticles in nanomedicine,” Journal of Biomedical Nanotechnology, vol. 10, no. 9, pp. 2371–2392, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. X. Cai, S. A. Sezate, S. Seal, and J. F. McGinnis, “Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria,” Biomaterials, vol. 33, no. 34, pp. 8771–8781, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Cai, S. Seal, and J. F. McGinnis, “Sustained inhibition of neovascularization in vldlr-/- mice following intravitreal injection of cerium oxide nanoparticles and the role of the ASK1-P38/JNK-NF-κB pathway,” Biomaterials, vol. 35, no. 1, pp. 249–258, 2014. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Kong, X. Cai, X. Zhou et al., “Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways,” Neurobiology of Disease, vol. 42, no. 3, pp. 514–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Cai, J. Yodoi, S. Seal, and J. F. McGinnis, “Nanoceria and thioredoxin regulate a common antioxidative gene network in tubby mice,” Advances in Experimental Medicine and Biology, vol. 801, pp. 829–836, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Liew and T. O'Brien, “The potential of cell-based therapy for diabetes and diabetes-related vascular complications,” Current Diabetes Reports, vol. 14, no. 3, article 469, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. V. Marchetti, T. U. Krohne, D. F. Friedlander, and M. Friedlander, “Stemming vision loss with stem cells,” The Journal of Clinical Investigation, vol. 120, no. 9, pp. 3012–3021, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Huang, V. Enzmann, and S. T. Ildstad, “Stem cell-based therapeutic applications in retinal degenerative diseases,” Stem Cell Reviews and Reports, vol. 7, no. 2, pp. 434–445, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. S. D. Schwartz, J.-P. Hubschman, G. Heilwell et al., “Embryonic stem cell trials for macular degeneration: a preliminary report,” The Lancet, vol. 379, no. 9817, pp. 713–720, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. S. D. Schwartz, C. D. Regillo, B. L. Lam et al., “Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies,” The Lancet, vol. 385, no. 9967, pp. 509–516, 2015. View at Publisher · View at Google Scholar · View at Scopus
  91. G. C. Davey, S. B. Patil, A. O'Loughlin, and T. O'Brien, “Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus,” Frontiers in Endocrinology, vol. 5, article 86, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Megaw and B. Dhillon, “Stem cell therapies in the management of diabetic retinopathy,” Current Diabetes Reports, vol. 14, no. 7, article 498, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Rajashekhar, A. Ramadan, C. Abburi et al., “Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy,” PLoS ONE, vol. 9, no. 1, Article ID e84671, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. T. A. Mendel, E. B. D. Clabough, D. S. Kao et al., “Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy,” PLoS ONE, vol. 8, no. 5, Article ID e65691, 2013. View at Publisher · View at Google Scholar · View at Scopus
  96. E. R. Burnight, P. D. Hsu, D. Ochoa et al., “Using RNA-mediated genome editing to create an animal model of retinal dystrophy for analysis of in vivo CRISPR/CAS9 treatment efficacy,” Investigative Ophthalmology & Visual Science, vol. 56, abstract 3589, 2015, The ARVO Annual Meeting. View at Google Scholar
  97. E. M. Stone, “Gene editing for gene- and cell based treatment of inherited retinal disease,” Investigative Ophthalmology & Visual Science, abstract 7, 2015, The ARVO Annual Meeting. View at Google Scholar
  98. S. H. Tsang, “Personalized medicine: patient specific stem cells, mouse models and therapy for retinal degenerations,” The ARVO Annual Meeting, Denver, Colo, USA, abstract 8, May 2015.
  99. K. J. Wahlin, C. Kim, J. Maruotti et al., “Gene-edited human pluripotent stem cell derived 3D retinas for modeling photoreceptor development and disease,” Investigative Ophthalmology & Visual Science, vol. 56, abstract 3596, 2015, The ARVO Annual Meeting. View at Google Scholar