Table of Contents Author Guidelines Submit a Manuscript
Journal of Diabetes Research
Volume 2016, Article ID 4158591, 11 pages
http://dx.doi.org/10.1155/2016/4158591
Research Article

Curcumin Protects Neonatal Rat Cardiomyocytes against High Glucose-Induced Apoptosis via PI3K/Akt Signalling Pathway

1Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, China
2Department of Pharmacology, Hubei University of Science and Technology, Xianning 437100, China
3Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China

Received 17 July 2015; Revised 29 November 2015; Accepted 1 December 2015

Academic Editor: Yunzhou Dong

Copyright © 2016 Wei Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw, “Global estimates of diabetes prevalence for 2013 and projections for 2035,” Diabetes Research and Clinical Practice, vol. 103, no. 2, pp. 137–149, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. W. B. Kannel and D. L. McGee, “Diabetes and cardiovascular disease. The Framingham study,” The Journal of the American Medical Association, vol. 241, no. 19, pp. 2035–2038, 1979. View at Publisher · View at Google Scholar · View at Scopus
  3. Z. V. Wang and J. A. Hill, “Diabetic cardiomyopathy: catabolism driving metabolism,” Circulation, vol. 131, no. 9, pp. 771–773, 2015. View at Publisher · View at Google Scholar
  4. S. Rubler, J. Dlugash, Y. Z. Yuceoglu, T. Kumral, A. W. Branwood, and A. Grishman, “New type of cardiomyopathy associated with diabetic glomerulosclerosis,” The American Journal of Cardiology, vol. 30, no. 6, pp. 595–602, 1972. View at Publisher · View at Google Scholar · View at Scopus
  5. I. G. Poornima, P. Parikh, and R. P. Shannon, “Diabetic cardiomyopathy: the search for a unifying hypothesis,” Circulation Research, vol. 98, no. 5, pp. 596–605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Frustaci, J. Kajstura, C. Chimenti et al., “Myocardial cell death in human diabetes,” Circulation Research, vol. 87, no. 12, pp. 1123–1132, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. C. He, H. Zhu, H. Li, M.-H. Zou, and Z. Xie, “Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes,” Diabetes, vol. 62, no. 4, pp. 1270–1281, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Tarquini, C. Lazzeri, L. Pala, C. M. Rotella, and G. F. Gensini, “The diabetic cardiomyopathy,” Acta Diabetologica, vol. 48, no. 3, pp. 173–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kajstura, F. Fiordaliso, A. M. Andreoli et al., “IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress,” Diabetes, vol. 50, no. 6, pp. 1414–1424, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Modesti, I. Bertolozzi, T. Gamberi et al., “Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress,” Diabetes, vol. 54, no. 2, pp. 394–401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Fiordaliso, R. Bianchi, L. Staszewsky et al., “Antioxidant treatment attenuates hyperglycemia-induced cardiomyocyte death in rats,” Journal of Molecular and Cellular Cardiology, vol. 37, no. 5, pp. 959–968, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-M. Zingg, S. T. Hasan, and M. Meydani, “Molecular mechanisms of hypolipidemic effects of curcumin,” BioFactors, vol. 39, no. 1, pp. 101–121, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Izem-Meziane, B. Djerdjouri, S. Rimbaud et al., “Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 302, no. 23, pp. 665–674, 2012. View at Google Scholar
  14. Y. Pan, Y. Wang, Y. Zhao et al., “Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy,” Diabetes, vol. 63, no. 10, pp. 3497–3511, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Yu, J. Wu, F. Cai et al., “Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats,” PLoS ONE, vol. 7, no. 12, Article ID e52013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. C. W. Younce, M. A. Burmeister, and J. E. Ayala, “Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a,” American Journal of Physiology—Cell Physiology, vol. 304, no. 6, pp. C508–C518, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Zielonka, M. Hardy, and B. Kalyanaraman, “HPLC study of oxidation products of hydroethidine in chemical and biological systems: ramifications in superoxide measurements,” Free Radical Biology and Medicine, vol. 46, no. 3, pp. 329–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Li, H. Zhu, E. Shen, L. Wan, J. M. O. Arnold, and T. Peng, “Deficiency of Rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes,” Diabetes, vol. 59, no. 8, pp. 2033–2042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Zhang, S. A. Babcock, N. Hu, J. R. Maris, H. Wang, and J. Ren, “Mitochondrial aldehyde dehydrogenase (ALDH2) protects against streptozotocin-induced diabetic cardiomyopathy: role of GSK3β and mitochondrial function,” BMC Medicine, vol. 10, article 40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. B. DeBosch, I. Treskov, T. S. Lupu et al., “Akt1 is required for physiological cardiac growth,” Circulation, vol. 113, no. 17, pp. 2097–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Liu, Z. Huang, L. Wang et al., “Sitagliptin alleviated myocardial remodeling of the left ventricle and improved cardiac diastolic dysfunction in diabetic rats,” Journal of Pharmacological Sciences, vol. 127, no. 3, pp. 260–274, 2015. View at Publisher · View at Google Scholar
  22. F. Giacco and M. Brownlee, “Oxidative stress and diabetic complications,” Circulation Research, vol. 107, no. 9, pp. 1058–1070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. W.-W. Kuo, W.-J. Wang, C.-Y. Tsai, C.-L. Way, H.-H. Hsu, and L.-M. Chen, “Diallyl trisufide (DATS) suppresses high glucose-induced cardiomyocyte apoptosis by inhibiting JNK/NFκB signaling via attenuating ROS generation,” International Journal of Cardiology, vol. 168, no. 1, pp. 270–280, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. K.-H. Tsai, W.-J. Wang, C.-W. Lin et al., “NADPH oxidase-derived superoxide anion-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose,” Journal of Cellular Physiology, vol. 227, no. 4, pp. 1347–1357, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. P. L. Hordijk, “Regulation of NADPH oxidases: the role of Rac proteins,” Circulation Research, vol. 98, no. 4, pp. 453–462, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Shen, Y. Li, Y. Li et al., “Rac1 is required for cardiomyocyte apoptosis during hyperglycemia,” Diabetes, vol. 58, no. 10, pp. 2386–2395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Sun, R.-C. Chen, Z.-H. Yang et al., “Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis,” Food and Chemical Toxicology, vol. 63, pp. 221–232, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. R. G. Katare, A. Caporali, A. Oikawa, M. Meloni, C. Emanuel, and P. Madeddu, “Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway,” Circulation: Heart Failure, vol. 3, no. 2, pp. 294–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Z.-Z. Yang, O. Tschopp, N. Di-Poï et al., “Dosage-dependent effects of Akt1/protein kinase Bα (PKBα) and Akt3/PKBγ on thymus, skin, and cardiovascular and nervous system development in mice,” Molecular and Cellular Biology, vol. 25, no. 23, pp. 10407–10418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Cho, J. Mu, J. K. Kim et al., “Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ),” Science, vol. 292, no. 5522, pp. 1728–1731, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. B. DeBosch, N. Sambandam, C. Weinheimer, M. Courtois, and A. J. Muslin, “Akt2 regulates cardiac metabolism and cardiomyocyte survival,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32841–32851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Wang, W. Feng, W. Xue et al., “Inactivation of GSK-3β by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling,” Diabetes, vol. 58, no. 6, pp. 1391–1402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Razeghi, M. E. Young, T. C. Cockrill, O. H. Frazier, and H. Taegtmeyer, “Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure,” Circulation, vol. 106, no. 4, pp. 407–411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Guo, Q. Yao, Z. Ke, H. Chen, J. Wu, and C. Liu, “Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK,” Molecular and Cellular Endocrinology, vol. 412, pp. 85–94, 2015. View at Publisher · View at Google Scholar